Your Name NEATLY:

MATH241 Exam 4 Fall 2021 (Justin Wyss-Gallifent)

Directions: Do not simplify unless indicated. No calculators are permitted. Show all work as appropriate for the methods taught in this course. Partial credit will be given for any Calc 3 related work, words or ideas which are relevant to the problem.

1. Extra Credit: Write down your TA and the date, time, building code and room number of your final exam.

Solution:

2. Suppose C is a piece of wire in the shape of a parabola with equation $y=2 x^{2}$ for $0 \leq x \leq 2$. Here x, y are in centimeters. If the electrical charge density at (x, y) is given by $f(x, y)=4 x$ coulombs per centimeter calculate the total electrical charge on the wire.

Evaluate

Solution:

3. Suppose an object follows the clockwise triangular path from $(0,0)$ to $(3,1)$ to $(1,0)$ and back to $(0,0)$. Use Green's Theorem to write down an iterated double integral for the work done on the object by the vector field:

$$
\vec{F}(x, y)=0.5 y^{2} \hat{\boldsymbol{\imath}}-x y \hat{\boldsymbol{\jmath}}
$$

Do Not Evaluate

Solution:

4. Suppose Σ is the portion of $y=4-x^{2}$ in the first octant and below $z=5$. Write down an iterated [15 pts] double integral for the surface area of Σ.

Do Not Evaluate

Solution:

5 . Let C be any curve from $(1,2,3)$ to $(4,3,-2)$. Evaluate and simplify:

$$
\int_{C}\left(\frac{2 x}{y}+z e^{x z}\right) d x+\left(-\frac{x^{2}}{y^{2}}\right) d y+x e^{x z} d z
$$

Evaluate

Solution:

6. Suppose Σ is the part of the cone $y=3-\sqrt{x^{2}+z^{2}}$ with $y \geq 0$ along with the base $x^{2}+z^{2} \leq 9 \quad[10 \mathrm{pts}]$ on the $x z$-plane. Suppose Σ has inwards orientation.

Evaluate the integral:

$$
\iint_{\Sigma}(4 x \hat{\boldsymbol{\imath}}+3 y \hat{\boldsymbol{\jmath}}-z \hat{\boldsymbol{k}}) \cdot \vec{n} d S
$$

Evaluate

Solution:

7. Explain briefly why the following vector field is not conservative:

Solution:

8. Suppose we have $f(x, y, z)=x^{2} y-x z$. Only one of the following makes sense. Circle the one [10 pts] that does and then calculate it. You do not need to justify how you made your choice.

$$
\nabla \cdot(\nabla f) \quad \text { and } \quad \nabla(\nabla \cdot f)
$$

Solution:

9. Suppose C is the intersection curve of the paraboloid $z=x^{2}+y^{2}$ with the cylinder $r=\cos \theta$ with $\quad[20 \mathrm{pts}]$ clockwise orientation when viewed from above. Apply Stokes' Theorem to the integral

$$
\int_{C}(x+z) d x+x^{2} d y+x y d z
$$

and proceed until you have an iterated double integral.

Do Not Evaluate

Solution:

