Important 1: Curves are always parametrized by $\bar{r}(t)=x(t) \hat{\imath}+y(t) \hat{\jmath}+z(t) \hat{k}$ for $a \leq t \leq b$ Note that some components might be 0 and the \hat{k} component will definitely be 0 in 2 D .
Important 2: Surfaces are always parametrized by $\bar{r}(u, v)=x(u, v) \hat{\imath}+y(u, v) \hat{\jmath}+z(u, v) \hat{k}$ for u, v restricted by R. Note that often it's not u, v but x, y or z, θ or \ldots
Important 3: Keep in mind that $\int_{C} 1 d s$ is length of $C, \iint_{\Sigma} 1 d S$ is surface area of $\Sigma, \iint_{R} 1 d A$ is area of R and $\iiint_{D} 1 d V$ is volume of D.

1. Line integral of a function. One choice:

$$
\int_{C} f d s=\int_{a}^{b} f(x(t), y(t), z(t))\left\|\bar{r}^{\prime}(t)\right\| d t
$$

2. Line integral of a vector field. Lots of possibilities. This one has the most options.
(a) Most basic. Could be so ugly as to be nonintegrable:

$$
\int_{C} \bar{F} \cdot d \bar{r}=\int_{a}^{b} \bar{F}(x(t), y(t), z(t)) \cdot \bar{r}^{\prime}(t) d t
$$

(b) If \bar{F} is conservative and f is a potential function then:

$$
\int_{C} \bar{F} \cdot d \bar{r}=f(\text { endpt of } \mathrm{C})-f(\text { startpt of } \mathrm{C})
$$

(c) If \bar{F} is conservative and C is closed then:

$$
\int_{C} \bar{F} \cdot d \bar{r}=0
$$

(d) If C is the edge of Σ with induced orientation then Stokes's Theorem gives:

$$
\int_{C} \bar{F} \cdot d \bar{r}=\iint_{\Sigma}(\nabla \times \bar{F}) \cdot \bar{n} d S \quad \text { Then go to 4(a) }
$$

(e) Note that there is alternate notation for this:

$$
\int_{C} M d x+N d y+P d z \quad \text { means } \quad \int_{C}(M \hat{\imath}+N \hat{\jmath}+P \hat{k}) \cdot d \bar{r}
$$

(f) If in 2 D and C is the edge of R with the cows on the left then Green's Theorem gives:

$$
\int_{C}(M \hat{\imath}+N \hat{\jmath}) \cdot d \bar{r} \text { or } \int_{C} M d x+N d y=\iint_{R} N_{x}-M_{y} d A
$$

3. Surface integral of a function. One choice:

$$
\iint_{\Sigma} f d S=\iint_{R} f(x(u, v), y(u, v), z(u, v))\left\|\bar{r}_{u} \times \bar{r}_{v}\right\| d A
$$

4. Surface integral of a vector field. Two possibilities.
(a) Always unless the Divergence Theorem applies:

$$
\iint_{\Sigma} \bar{F} \cdot \bar{n} d S= \pm \iint_{R} \bar{F}(x(u, v), y(u, v), z(u, v)) \cdot\left[\bar{r}_{u} \times \bar{r}_{v}\right] d A
$$

(b) If Σ is the boundary surface of a solid object D with outward orientation then we can use the Divergence Theorem (Gauss's Theorem) giving:

$$
\iint_{\Sigma} \bar{F} \cdot \bar{n} d S=\iiint_{D} \nabla \cdot \bar{F} d V
$$

