Math 241 Parametrization of Surfaces - Solutions

1. (a) Example: Σ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ above the rectangle in the $x y$-plane with opposite corners $(1,0)$ and $(2,5)$.
Solution: $\bar{r}(x, y)=x \hat{\imath}+y \hat{\jmath}+\sqrt{x^{2}+y^{2}} \hat{k}$ with $1 \leq x \leq 2$ and $0 \leq y \leq 5$.
(b) Example: Σ is the part of the paraboloid $z=9-x^{2}-y^{2}$ above the triangle in the $x y$-plane with corners $(0,0),(4,0)$ and $(0,2)$.
Solution: $\bar{r}(x, y)=x \hat{\imath}+y \hat{\jmath}+\left(9-x^{2}-y^{2}\right) \hat{k}$ with $0 \leq x \leq 4$ and $0 \leq y \leq 2-\frac{1}{2} x$.
(c) Example: Σ is the part of the plane $z=20-x-2 y$ above R, where R is the region in the $x y$-plane between $y=x^{2}$ and $y=4$.
Solution: $\bar{r}(x, y)=x \hat{\imath}+y \hat{\jmath}+(20-x-2 y) \hat{k}$ with $-2 \leq x \leq 2$ and $x^{2} \leq y \leq 4$.
2. (a) Example: Σ is the part of the cone $z=2+\sqrt{x^{2}+y^{2}}$ inside the cylinder $x^{2}+y^{2}=4$.

Solution: $\bar{r}(r, \theta)=r \cos \theta \hat{\imath}+r \sin \theta \hat{\jmath}+(2+r) \hat{k}$ with $0 \leq \theta \leq 2 \pi$ and $0 \leq r \leq 2$.
(b) Example: Σ is the part of the parabolic sheet $z=y^{2}$ inside the cylinder $r=\sin \theta$.

Solution: $\bar{r}(r, \theta)=r \cos \theta \hat{\imath}+r \sin \theta \hat{\jmath}+r^{2} \sin ^{2} \theta \hat{k}$ for $0 \leq \theta \leq \pi$ and $0 \leq r \leq \sin \theta$.
(c) Example: Σ is the part of the plane $z=20-x-2 y$ in the first octant and inside $r=2$. Solution: $\bar{r}(r, \theta)=r \cos \theta \hat{\imath}+r \sin \theta \hat{\jmath}+(20-r \cos \theta-2 r \sin \theta) \hat{k}$ with $0 \leq \theta \leq \frac{\pi}{2}$ and $0 \leq r \leq 2$.
3. (a) Example: Σ is the part of the paraboloid $y=x^{2}+z^{2}$ to the right of the square in the $x z$-plane with corners $(0,0),(2,0),(0,2)$ and $(2,2)$.
Solution: $\bar{r}(x, z)=x \hat{\imath}+\left(x^{2}+z^{2}\right) \hat{\jmath}+z \hat{k}$ with $0 \leq x \leq 2$ and $0 \leq z \leq 2$.
(b) Example: Σ is the part of the parabolic sheet $x=16-z^{2}$ inside the cylinder $y^{2}+z^{2}=9$.

Solution: $\bar{r}(r, \theta)=\left(16-r^{2} \sin ^{2} \theta\right) \hat{\imath}+r \cos \theta \hat{\jmath}+r \sin \theta \hat{k}$ with $0 \leq \theta \leq 2 \pi$ and $0 \leq r \leq 3$.
4. (a) Example: Σ is the part of the cylinder $x^{2}+y^{2}=9$ between $z=0$ and $z=2$.

Solution: $\bar{r}(z, \theta)=3 \cos \theta \hat{\imath}+3 \sin \theta \hat{\jmath}+z \hat{k}$ with $0 \leq \theta \leq 2 \pi$ and $0 \leq z \leq 2$.
(b) Example: Σ is the part of the cylinder $x^{2}+z^{2}=9$ between $y=0$ and $y=2$.

Solution: $\bar{r}(y, \theta)=3 \cos \theta \hat{\imath}+y \hat{\jmath}+3 \sin \theta \hat{k}$ with $0 \leq \theta \leq 2 \pi$ and $0 \leq y \leq 2$.
(c) Example: Σ is the part of the sphere $x^{2}+y^{2}+z^{2}=9$ below the cone $z=\sqrt{x^{2}+y^{2}}$.

Solution: $\bar{r}(\phi, \theta)=3 \sin \phi \cos \theta \hat{\imath}+3 \sin \phi \sin \theta \hat{\jmath}+3 \cos \phi \hat{k}$ with $0 \leq \theta \leq 2 \pi$ and $\pi / 4 \leq$ $\phi \leq \pi$.
(d) Example: Σ is the part of the cylinder $x^{2}+y^{2}=9$ between $z=0$ and $z=2$ and in the first octant.
Solution: $\bar{r}(z, \theta)=3 \cos \theta \hat{\imath}+3 \sin \theta \hat{\jmath}+z \hat{k}$ for $0 \leq \theta \leq \pi / 2$ and $0 \leq z \leq 2$.
(e) Example: Σ is the part of the sphere $x^{2}+y^{2}+z^{2}=9$ above the $x y$-plane.

Solution: $\bar{r}(\phi, \theta)=3 \sin \phi \cos \theta \hat{\imath}+3 \sin \phi \sin \theta \hat{\jmath}+3 \cos \phi \hat{k}$ with $0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq$ $\pi / 2$.

