Math 241 Section 11.3: Dot Product Dr. Justin O. Wyss-Gallifent

- 1. Defined the dot product: $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$. Example: Make one up.
- 2. Basic properties:
 - (a) $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
 - (b) $\mathbf{a} \cdot (\mathbf{b} \pm \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} \pm \mathbf{a} \cdot \mathbf{c}$
 - (c) $\alpha(\mathbf{a} \cdot \mathbf{b}) = (\alpha \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\alpha \mathbf{b})$
- 3. Advanced properties:
 - (a) $\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}||||\mathbf{b}|| \cos \theta$ where θ is the angle between them. This follows from the Law of Cosines and is sometimes (physics especially) used as an alternate definition of the dot product.
 - (b) $\mathbf{a} \perp \mathbf{b}$ iff $\mathbf{a} \cdot \mathbf{b} = 0$ and how this follows from the previous.
 - (c) $\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}||||\mathbf{b}||}$
 - (d) $\mathbf{a} \cdot \mathbf{a} = ||\mathbf{a}||^2$ and $||\mathbf{a}|| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$
- 4. Definition of projection and the formula

$$\Pr_{\mathbf{b}}\mathbf{a} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right)\mathbf{b}$$

Example: Make one up.

Note: Questions like 15-17 in the homework can be confusing. All you're doing is writing the original vector as a sum of two vectors, those two vectors perpendicular to one another.