Math 241 Section 11.3: Dot Product

Dr. Justin O. Wyss-Gallifent

1. Defined the dot product: $\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$. Example: Make one up.
2. Basic properties:
(a) $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
(b) $\mathbf{a} \cdot(\mathbf{b} \pm \mathbf{c})=\mathbf{a} \cdot \mathbf{b} \pm \mathbf{a} \cdot \mathbf{c}$
(c) $\alpha(\mathbf{a} \cdot \mathbf{b})=(\alpha \mathbf{a}) \cdot \mathbf{b}=\mathbf{a} \cdot(\alpha \mathbf{b})$
3. Advanced properties:
(a) $\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$ where θ is the angle between them. This follows from the Law of Cosines and is sometimes (physics especially) used as an alternate definition of the dot product.
(b) $\mathbf{a} \perp \mathbf{b}$ iff $\mathbf{a} \cdot \mathbf{b}=0$ and how this follows from the previous.
(c) $\cos (\theta)=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}$
(d) $\mathbf{a} \cdot \mathbf{a}=\|\mathbf{a}\|^{2}$ and $\|\mathbf{a}\|=\sqrt{\mathbf{a} \cdot \mathbf{a}}$
4. Definition of projection and the formula

$$
\operatorname{Pr}_{\mathbf{b}} \mathbf{a}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b}
$$

Example: Make one up.

Note: Questions like 15-17 in the homework can be confusing. All you're doing is writing the original vector as a sum of two vectors, those two vectors perpendicular to one another.

