Math 241 Section 11.4: Cross Product

Dr. Justin O. Wyss-Gallifent

1. Define the cross product. First define:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

and then:

$$
\begin{aligned}
\mathbf{a} & =a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \\
\mathbf{b} & =b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k} \\
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}
\end{aligned}
$$

It's easiest to think of doing this on a case-by-case basis without writing down a messy general formula. They may have seen other definitions and that's fine too.
Example: Make one up.
2. Basic properties:
(a) $\mathbf{a} \times(\mathbf{b} \pm \mathbf{c})=\mathbf{a} \times \mathbf{b} \pm \mathbf{a} \times \mathbf{c}$
(b) $\alpha(\mathbf{a} \times \mathbf{b})=(\alpha \mathbf{a}) \times \mathbf{b}=\mathbf{a} \times(\alpha \mathbf{b})$
(c) $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$ (Note the negative in this one!)

Anti-commutative, distributive over \pm on both ends, associative with scalar multiplication.
3. Advanced properties:
(a) $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}|\|| | \mathbf{b}\| \sin \theta$.
(b) \mathbf{a} is parallel to \mathbf{b} iff $\mathbf{a} \times \mathbf{b}=\mathbf{0}$.
(c) The vector $\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b} via the right-hand rule. This will be one of the most useful properties of the cross product.

