Math 241 Section 11.5: Equations of Lines
 Dr. Justin O. Wyss-Gallifent

1. Equations of lines are not easy; no sense of slope etc. from which to build an equation. Instead we'll construct lines three different ways, all of which have their own use.
2. Parametric form: If $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the line and $\mathbf{L}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ is a direction vector (the direction the line goes) then the parametric equations are

$$
\begin{aligned}
& x=x_{0}+a t \\
& y=y_{0}+b t \\
& z=z_{0}+c t
\end{aligned}
$$

form the other points for all possible real numbers t. Emphasized how each point corresponds to a t-value and each t gives a point.
Example: When $\left(x_{0}, y_{0}, z_{0}\right)$ and $\mathbf{L}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ are both explicitly given.
3. Changed this to vector form

$$
\mathbf{r}=\mathbf{r}(t)=\left(x_{0}+a t\right) \mathbf{i}+\left(y_{0}+b t\right) \mathbf{j}+\left(z_{0}+c t\right) \mathbf{k}
$$

and how this written like a vector but we think of it like a point. In other words we can think of it as a vector which points from the origin to the points on the line. This is actually the primary way we'll see lines later in the course.
Example: Rewrite the previous.
4. Developed the symmetric forms by solving the parametric forms for t and setting them equal. Example: Rewrite the previous.
Example. Did one where one of a, b, c is 0 . In this case the variable with no t is left alone and the other two are solved for t and set equal.
Example. Did one where two of a, b, c are 0 . In this case the two with no t are left alone and the other isn't mentioned because the variable can be anything.
5. Distance formula from point to line. If a line has point P and direction vector \mathbf{L} then the distance from the line to another point Q equals:

$$
\text { distance }=\frac{\|\overrightarrow{P Q} \times \mathbf{L}\|}{\|\mathbf{L}\|}
$$

Example: Make one up.

Trickier examples:

- Finding the equation of a line when two points are given, since \mathbf{L} must be found first, and either point can be used.
- Finding where a line intersects a sphere, for example, by finding the parametric equations and plugging them into the sphere equation and solving for t.
- Doing a distance from point-to-line problem when the line is given as a confusing symmetric equation since this involves extracting the necessary information from the equation.

