Math 241 Section 11.6: Equations of Planes
 Dr. Justin O. Wyss-Gallifent

1. Development: Start with a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ and a vector $\mathbf{N}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$. The plane will pass through P and be perpendicular to \mathbf{N}. The vector \mathbf{N} is called the normal vector for this reason, the word normal often means perpendicular in mathematics. Then if $R=(x, y, z)$ is another point on the plane then $\mathbf{N} \cdot \overrightarrow{P R}=0$ which gets us

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

We can then simplify this to $a x+b y+c z=d$. Note how even in the simplified version the a, b, c are still the coefficients of x, y, z if they're on the same side.
Example: Make one up.
2. Sketching planes:
(a) None of $a, b, c=0$: Find and plot x, y, z intercepts and draw a little triangle. Note that the plane extends from the triangle but it gives a good idea of what's going on. Example: Make one up.
(b) Two of $a, b, c=0$: Get parallel to either $x y, y z$ or $x z$-plane. Think of these as shifting these planes.
Example: Make one up.
(c) One of $a, b, c=0$: Draw the corresponding line in the $x y, y z$ or $x z$-plane and "extend" it to a plane.
Example: $3 x-6 y=18$ we'd plot the line in the $x y$-plane and then extend it in the z-direction because z can be anything.
Example: $2 x+3 z=6$ we'd plot the line in the $x z$-plane and then extend it in the y direction because y can be anything.
Example: $2 y+2 z=8$ we'd plot the line in the $y z$-plane and then extend it in the x-direction because x can be anything.
3. Distance formula from point to plane. If a plane has point P and normal vector \mathbf{N} and if Q is another point then the distance between Q and the plane is:

$$
\text { distance }=\frac{|\mathbf{N} \cdot \overrightarrow{P Q}|}{\|\mathbf{N}\|}
$$

Example: Make one up.

Note: The following problems can be tricky at first:

- Finding the equation of a plane given other than P and \mathbf{N}. For example given three points, or given one point and a line in the plane, or given one point and a line perpendicular to the plane.
- Problems that combine 11.5 and 11.6 , for example find the equation of the line formed by the intersection of two planes.

