Math 241 Section 12.4: Curves and Associated Definitions
 Dr. Justin O. Wyss-Gallifent

1. A space curve (a curve) is the range of a VVF. Really it's just the curve we draw. A curve can be discussed without explicitly giving an $\mathbf{r}(t)$. A choice of $\mathbf{r}(t)$ is defined as a parametrization of the curve and one curve can have many parametrizations.
Example: A line.
Example: A circle.
2. Associated Definitions
(a) Closed:

- A closed parametrization is a parametrization with the property that $\mathbf{r}(a)=\mathbf{r}(b)$ (it starts where it ends) but otherwise does not cross itself infinitely many times. Example: $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}$ for $0 \leq t \leq 2 \pi$.
Example: If t goes any further like twice around then the curve crosses itself infinitely many times and that's a no-no.
- A curve is closed if it has a closed parametrizations.

Example: The circle again. There are lots of parametrizations of the circle but since there is one that's closed then the curve is closed.
(b) Smooth:

- A smooth parametrization has $\mathbf{r}^{\prime}(t) \neq \mathbf{0}$ except it is permitted to be $\mathbf{0}$ at the endpoints, if it has endpoints. A good analogy is an ideal commute where your velocity is (probably) $\mathbf{0}$ at the start and end but you never need to stop on the way.
- A curve is smooth if it has a smooth parametrization.
(c) Piecewise Smooth:
- A piecewise smooth parametrization is a parametrization in which you can break the t-range into pieces on which the parametrization is smooth. Your commute is probably more like this.
- A curve is piecewise smooth if it has a piecewise smooth parametrization.

Example: $\mathbf{r}(t)=(2 t+1) \mathbf{i}+(3-t) \mathbf{j}+t \mathbf{j}$ for all t. Here $\mathbf{r}^{\prime}(t)=2 \mathbf{i}-1 \mathbf{j}+1 \mathbf{k}$ which is never $\mathbf{0}$ hence smooth.
Example: $\mathbf{r}(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}+2 \mathbf{k}$ on $[0,5]$. Here $\mathbf{r}^{\prime}(t)=2 t \mathbf{i}+3 t^{2} \mathbf{j}+0 \mathbf{k}$ which is $\mathbf{0}$ at $t=0$ but that's an endpoint so it's okay.
Example: $\mathbf{r}(t)$ same as above but on $[-5,5]$. Here $t=0$ is no longer an endpoint so it's not smooth. It is, however, piecewise smooth.
Example: $\mathbf{r}(t)=t^{1 / 3} \mathbf{i}$ on $[-1,1]$. Here $\mathbf{r}^{\prime}(t)=\frac{1}{3 t^{2 / 3}} \mathbf{i}$ which is undefined at $t=0$ hence neither smooth nor piecewise smooth.
(d) Length: If C is piecewise smooth on $[a, b]$ then:

$$
\text { Length of } C=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t
$$

Example: An easy one.

Note: Examples like 22,25 in the text are good because they require a sneaky factorization inside the square root before integration.

