Math 241 Section 12.5: Tangents and Normals to Curves Dr. Justin O. Wyss-Gallifent

1. Intro:

I discussed how sometimes we want unit vectors which are tangent to and normal to a curve, what "normal to a curve" might mean. We'll see why soon in this section.

2. The Tangent Vector:

Defined

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||}$$

This one is usually pretty intuitive. Emphasized that it's length 1 and points in the direction of the curve.

3. The Normal Vector:

Defined

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{||\mathbf{T}'(t)||}$$

We do this because $\mathbf{a}(t)$ is not normal (it contains both change in velocity in the direction of motion and perpendicular to it) and so by taking $\mathbf{T}'(t)$ instead, since $||\mathbf{T}|| = 1$, we only capture the change in direction. More formally we can see the result is normal to the curve by showing it's perpendicular to $\mathbf{T}(t)$:

$$\mathbf{T}(t) \cdot \mathbf{T}(t) = ||\mathbf{T}|| = 1$$
$$\frac{d}{dt} (\mathbf{T}(t) \cdot \mathbf{T}(t)) = 0$$
$$2\mathbf{T}'(t) \cdot T(t) = 0$$

Since $\mathbf{T}' \perp \mathbf{T}$ and \mathbf{N} is a multiple of \mathbf{T}' we know $\mathbf{N} \perp \mathbf{T}$.

Example: Find **T** and **N** at (4,2) on the curve $x = y^2$ by parametrizing as $\mathbf{r}(t) = t^2 \mathbf{i} + t \mathbf{j}$ and working it out.

4. Tangential and normal components of acceleration:

Acceleration breaks down into two components, one in the direction of motion and one perpendicular to it. These turn out to be multiples of \mathbf{T} and \mathbf{N} and in fact:

$$\mathbf{a} = a_{\mathbf{T}}\mathbf{T} + a_{\mathbf{N}}\mathbf{N}$$

where:

- The tangential component of acceleration is: $a_{\mathbf{T}} = \frac{\mathbf{v} \cdot \mathbf{a}}{||\mathbf{v}||}$
- The normal component of acceleration is: $a_{\mathbf{N}} = \frac{||\mathbf{v} \times \mathbf{a}||}{||\mathbf{v}||}$

Example: Find $a_{\mathbf{T}}$ and $a_{\mathbf{N}}$ at t = 1 for $\mathbf{r}(t) = 2t \mathbf{i} + t^2 \mathbf{j} + 1/3t^3 \mathbf{k}$.