Math 241 Section 12.5: Tangents and Normals to Curves
 Dr. Justin O. Wyss-Gallifent

1. Intro:

I discussed how sometimes we want unit vectors which are tangent to and normal to a curve, what "normal to a curve" might mean. We'll see why soon in this section.
2. The Tangent Vector:

Defined

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}
$$

This one is usually pretty intuitive. Emphasized that it's length 1 and points in the direction of the curve.
3. The Normal Vector:

Defined

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}
$$

We do this because $\mathbf{a}(t)$ is not normal (it contains both change in velocity in the direction of motion and perpendicular to it) and so by taking $\mathbf{T}^{\prime}(t)$ instead, since $\|\mathbf{T}\|=1$, we only capture the change in direction. More formally we can see the result is normal to the curve by showing it's perpendicular to $\mathbf{T}(t)$:

$$
\begin{aligned}
\mathbf{T}(t) \cdot \mathbf{T}(t) & =\|\mathbf{T}\|=1 \\
\frac{d}{d t}(\mathbf{T}(t) \cdot \mathbf{T}(t)) & =0 \\
2 \mathbf{T}^{\prime}(t) \cdot T(t) & =0
\end{aligned}
$$

Since $\mathbf{T}^{\prime} \perp \mathbf{T}$ and \mathbf{N} is a multiple of \mathbf{T}^{\prime} we know $\mathbf{N} \perp \mathbf{T}$.
Example: Find \mathbf{T} and \mathbf{N} at $(4,2)$ on the curve $x=y^{2}$ by parametrizing as $\mathbf{r}(t)=t^{2} \mathbf{i}+t \mathbf{j}$ and working it out.
4. Tangential and normal components of acceleration:

Acceleration breaks down into two components, one in the direction of motion and one perpendicular to it. These turn out to be multiples of \mathbf{T} and \mathbf{N} and in fact:

$$
\mathbf{a}=a_{\mathbf{T}} \mathbf{T}+a_{\mathbf{N}} \mathbf{N}
$$

where:

- The tangential component of acceleration is: $a_{\mathbf{T}}=\frac{\mathbf{v} \cdot \mathbf{a}}{\|\mathbf{v}\|}$
- The normal component of acceleration is: $a_{\mathbf{N}}=\frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|}$

Example: Find $a_{\mathbf{T}}$ and $a_{\mathbf{N}}$ at $t=1$ for $\mathbf{r}(t)=2 t \mathbf{i}+t^{2} \mathbf{j}+1 / 3 t^{3} \mathbf{k}$.

