1. Intro:
 I discussed how sometimes we want unit vectors which are tangent to and normal to a curve, what “normal to a curve” might mean. We’ll see why soon in this section.

2. The Tangent Vector:
 Defined
 \[\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||} \]
 This one is usually pretty intuitive. Emphasized that it’s length 1 and points in the direction of the curve.

3. The Normal Vector:
 Defined
 \[\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{||\mathbf{T}'(t)||} \]
 We do this because \(\mathbf{a}(t) \) is not normal (it contains both change in velocity in the direction of motion and perpendicular to it) and so by taking \(\mathbf{T}'(t) \) instead, since \(||\mathbf{T}|| = 1 \), we only capture the change in direction. More formally we can see the result is normal to the curve by showing it’s perpendicular to \(\mathbf{T}(t) \):
 \[
 \mathbf{T}(t) \cdot \mathbf{T}(t) = ||\mathbf{T}|| = 1 \\
 \frac{d}{dt} (\mathbf{T}(t) \cdot \mathbf{T}(t)) = 0 \\
 2\mathbf{T}'(t) \cdot \mathbf{T}(t) = 0

 Since \(\mathbf{T}' \perp \mathbf{T} \) and \(\mathbf{N} \) is a multiple of \(\mathbf{T}' \) we know \(\mathbf{N} \perp \mathbf{T} \).

Example: Find \(\mathbf{T} \) and \(\mathbf{N} \) at \((4, 2) \) on the curve \(x = y^2 \) by parametrizing as \(\mathbf{r}(t) = t^2 \mathbf{i} + t \mathbf{j} \) and working it out.

4. Tangential and normal components of acceleration:
 Acceleration breaks down into two components, one in the direction of motion and one perpendicular to it. These turn out to be multiples of \(\mathbf{T} \) and \(\mathbf{N} \) and in fact:
 \[
 \mathbf{a} = a_T \mathbf{T} + a_N \mathbf{N}

 where:
 - The tangential component of acceleration is: \(a_T = \frac{\mathbf{v} \cdot \mathbf{a}}{||\mathbf{v}||} \)
 - The normal component of acceleration is: \(a_N = \frac{||\mathbf{v} \times \mathbf{a}||}{||\mathbf{v}||} \)

Example: Find \(a_T \) and \(a_N \) at \(t = 1 \) for \(\mathbf{r}(t) = 2t \mathbf{i} + t^2 \mathbf{j} + 1/3t^3 \mathbf{k} \).