Math 241 Section 13.3: Partial Derivatives
 Dr. Justin O. Wyss-Gallifent

1. Definition and Notation

Give a formal definition of the partial derivatives (in terms of limits) and then give the way that we actually do them - treating other variables as constants. We have notation $f_{x}=\frac{\partial f}{\partial x}$ and $f_{y}=\frac{\partial f}{\partial y}$.
Examples: Lots of examples, making sure to hit some that involve quotient rules, chain rules, etc.
2. Methods of Visualization:
(a) Talked about how $f_{x}(x, y)$ gives the slope of the tangent line in the x-direction with y fixed and similarly $f_{y}(x, y)$ gives the slope of the tangent line in the y-direction with x fixed. This is harder to see for more variables like $f_{x}(x, y, z)$.
(b) If $f(x, y)$ gives the temperature of the plane at (x, y) then $f_{x}(x, y)$ give the instantaneous temperature change of an object with respect to distance (for example, degrees Celsius per meter) as it passes through (x, y) in the positive x-direction. Similarly for f_{y}. This works nicely in 3D too.
Example: Do one with units and explanation.
3. Higher Derivatives

Talk about higher derivatives and especially comment on the notation $f_{x y}=\frac{\partial^{2} f}{\partial y \partial x}, f_{y x}=\frac{\partial^{2} f}{\partial x \partial y}$, $f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}, f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}$.
Example: Do one.
Mentioned that almost always $f_{x y}=f_{y x}$ for example.

