Math 241 Section 13.3: Partial Derivatives Dr. Justin O. Wyss-Gallifent

1. Definition and Notation

Give a formal definition of the partial derivatives (in terms of limits) and then give the way that we actually do them - treating other variables as constants. We have notation $f_x = \frac{\partial f}{\partial x}$

and $f_y = \frac{\partial f}{\partial y}$. Examples: Lots of examples, making sure to hit some that involve quotient rules, chain rules, etc.

- 2. Methods of Visualization:
 - (a) Talked about how $f_x(x, y)$ gives the slope of the tangent line in the x-direction with y fixed and similarly $f_y(x, y)$ gives the slope of the tangent line in the y-direction with x fixed. This is harder to see for more variables like $f_x(x, y, z)$.
 - (b) If f(x,y) gives the temperature of the plane at (x,y) then $f_x(x,y)$ give the instantaneous temperature change of an object with respect to distance (for example, degrees Celsius per meter) as it passes through (x, y) in the positive x-direction. Similarly for f_y . This works nicely in 3D too.

Example: Do one with units and explanation.

3. Higher Derivatives

Talk about higher derivatives and especially comment on the notation $f_{xy} = \frac{\partial^2 f}{\partial y \partial x}$, $f_{yx} = \frac{\partial^2 f}{\partial x \partial y}$, $f_{xx} = \frac{\partial^2 f}{\partial x^2}$, $f_{yy} = \frac{\partial^2 f}{\partial y^2}$. Example: Do one.

Mentioned that almost always $f_{xy} = f_{yx}$ for example.