Math 241 Section 13.4: The Chain Rule
 Dr. Justin O. Wyss-Gallifent

1. There's lots of crap in the book for the chain rule. They can ignore most of it.
2. First I pointed out that for example if $z=x^{3} y+y^{2}$ and $x=u \sin (v)$ and $y=v \cos (u)$ then really z is a function of u and v and so $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ make sense.
Likewise if $z=x e^{x y}$ and $x=2 t^{3}$ and $y=\sqrt{t}$ then really z is a function of t and so $\frac{d z}{d t}$ makes sense.
3. Method for applying the chain rule:

Step 1: Draw a tree diagram.
Step 2: On each branch put either a d or a ∂ depending on whether it's a regular derivative (one var) or a partial derivative.
Step 3: Find all routes from the left side to the variable we're taking the derivative with respect to.
Step 4: Along each path find the derivatives and multiply.
Step 5: Add the paths.
Step 6: Substitute in for the final variable(s).
Example: Standard.
Example: One where the starting function ends up being a function of one variable.
Example: One like $w=t^{2}+1 / s$ and $s=t^{3}+t$ because $\frac{d w}{d t}=\frac{\partial w}{\partial s} \frac{d s}{d t}+\frac{\partial w}{\partial t}$. This example is useful because it demonstrates that (a) tree branches need not be the same length and (b) $\frac{d w}{d t}$ and $\frac{\partial w}{\partial t}$ are quite different.
4. I mentioned related rates and how the chain rule is useful. The example I did was something like: Sand falls in a conical pile at $2 \pi \mathrm{in}^{3} / \mathrm{min}$. The radius increases at $3 \mathrm{in} / \mathrm{min}$. How fast is the height changing when $h=10$ and $r=8$?

