1. Recall that f_x means the change in f as x increases (in the i direction) and likewise for f_y (in the j direction) and f_z (in the k direction) and so on. We might ask how f changes if we go in some other direction.

2. Defn: The directional derivative of f in the direction of the unit vector $\mathbf{u} = ai + bj + ck$ is denoted $D_\mathbf{u}f$ and is defined by

$$D_\mathbf{u}f = af_x + bf_y + cf_z$$

Here the $+cf_z$ only appears in the 3D case.

Note: The phrase "directional derivative in the direction of" is used even when the vector is not a unit vector but you must make it a unit vector before using the formula.

Examples.