Math 241 Section 13.5: The Directional Derivative

Dr. Justin O. Wyss-Gallifent

1. Recall that f_{x} means the change in f as x increases (in the \mathbf{i} direction) and likewise for f_{y} (in the \mathbf{j} direction) and f_{z} (in the \mathbf{k} direction) and so on. We might ask how f changes if we go in some other direction.
2. Defn: The directional derivative of f in the direction of the unit vector $\mathbf{u}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ is denoted $D_{\mathbf{u}} f$ and is defined by

$$
D_{\mathbf{u}} f=a f_{x}+b f_{y}+c f_{z}
$$

Here the $+c f_{z}$ only appears in the 3D case.
Note: The phrase "directional derivative in the direction of" is used even when the vector is not a unit vector but you must make it a unit vector before using the formula.
Examples.

