Math 241 Section 13.6: The Gradient
 Dr. Justin O. Wyss-Gallifent

1. Definition

The gradient of f is denoted either Grad f or ∇f (note that ∇ is pronounced "nabla" and comes from the Hellenistic Greek word $\nu \alpha \beta \lambda \alpha$ for a Phoenician harp) and is defined by:

$$
\nabla f=f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k}
$$

Note that this is a vector and dhe $+f_{z} \mathbf{k}$ only appears in the 3 D case. Examples.
2. Basic properties
(a) Observe that since $\|\mathbf{u}\|=1$ we have

$$
D_{\mathbf{u}} f=\mathbf{u} \cdot \nabla f=\|\mathbf{u}\|\|\nabla f\| \cos \theta=\|\nabla f\| \cos \theta
$$

Where θ is the angle between \mathbf{u} and ∇f.
It follows that $D_{\mathbf{u}} f$ is largest when $\theta=0$ in which case \mathbf{u} points in the same direction as ∇f and $D_{\mathbf{u}} f$ equals $\|\nabla f\|$.
(b) First this means that ∇f points in the direction of maximum instantaneous increase of f.
(c) Second this means that the largest possible $D_{\mathbf{u}} f$ is in fact $\|\nabla f\|$.
(d) To put (b) and (c) together: Different \mathbf{u} give different values for $D_{\mathbf{u}} f$. The largest value is when $\mathbf{u}=\nabla f$ and that largest value is $\|\nabla f\|$.

Example. If the temp at (x, y) is $f(x, y)=x^{2} y$ and a bug is at $(1,2)$ in which direction does it detect the greatest increase in temperature and what is that increase?
3. Normal/Perpendicular properties
(a) $\nabla f(x, y)$ is normal to the level curve of $f(x, y)$ at (x, y).

Example: Find a vector \perp to $y=x^{2}$ at $(3,9)$.
Solution: Set $f(x, y)=y-x^{2}$ then $\nabla f=-2 x \mathbf{i}+1 \mathbf{j}$ and so $\nabla f(3,9)=-18 \mathbf{i}+1 \mathbf{j}$ works.
(b) $\nabla f(x, y, z)$ is normal to the level surface of $f(x, y, z)$ at (x, y, z).

Example.

