Math 241 Section 13.6: The Gradient Dr. Justin O. Wyss-Gallifent

1. Definition

The gradient of f is denoted either Grad f or ∇f (note that ∇ is pronounced "nabla" and comes from the Hellenistic Greek word $\nu \alpha \beta \lambda \alpha$ for a Phoenician harp) and is defined by:

$$\nabla f = f_x \, \mathbf{i} + f_y \, \mathbf{j} + f_z \, \mathbf{k}$$

Note that this is a vector and dhe $+f_z \mathbf{k}$ only appears in the 3D case. Examples.

- 2. Basic properties
 - (a) Observe that since $||\mathbf{u}|| = 1$ we have

$$D_{\mathbf{u}}f = \mathbf{u} \cdot \nabla f = ||\mathbf{u}|| ||\nabla f|| \cos \theta = ||\nabla f|| \cos \theta$$

Where θ is the angle between **u** and ∇f .

It follows that $D_{\mathbf{u}}f$ is largest when $\theta = 0$ in which case \mathbf{u} points in the same direction as ∇f and $D_{\mathbf{u}}f$ equals $||\nabla f||$.

- (b) First this means that ∇f points in the direction of maximum instantaneous increase of f.
- (c) Second this means that the largest possible $D_{\mathbf{u}}f$ is in fact $||\nabla f||$.
- (d) To put (b) and (c) together: Different **u** give different values for $D_{\mathbf{u}}f$. The largest value is when $\mathbf{u} = \nabla f$ and that largest value is $||\nabla f||$.

Example. If the temp at (x, y) is $f(x, y) = x^2 y$ and a bug is at (1, 2) in which direction does it detect the greatest increase in temperature and what is that increase?

- 3. Normal/Perpendicular properties
 - (a) $\nabla f(x, y)$ is normal to the level curve of f(x, y) at (x, y). Example: Find a vector \perp to $y = x^2$ at (3, 9). Solution: Set $f(x, y) = y - x^2$ then $\nabla f = -2x \mathbf{i} + 1 \mathbf{j}$ and so $\nabla f(3, 9) = -18 \mathbf{i} + 1 \mathbf{j}$ works.
 - (b) $\nabla f(x, y, z)$ is normal to the level surface of f(x, y, z) at (x, y, z). Example.