Math 241 Section 13.7: Tangent Plane Approximation
 Dr. Justin O. Wyss-Gallifent

1. First recall how if $f(x)$ is a function and x_{0} is an x-value we can draw the tangent line at $\left(x_{0}, f\left(x_{0}\right)\right)$. Using point-slope form this line is $y-y_{0}=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ or $y=y_{0}+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$. If x is close to x_{0} then we have:

$$
f(x) \approx y_{0}+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

While this is a weak approximation it's the beginning of the Taylor Series which is extremely useful:

$$
f(x)=y_{0}+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+\ldots
$$

2. In the case of $f(x, y)$ we can do the same thing. We take the point $\left(x_{0}, y_{0}\right)$ and construct the tangent plane. How do we do this? Well, the tangent plane passes through $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ and has normal vector perpendicular to the graph of $f(x, y)$. Well, the graph of $z=f(x, y)$ is the level surface for the function of three variables $g(x, y, z)=f(x, y)-z$ and so we can obtain a perpendicular vector using the gradient and use this for \mathbf{n} :

$$
\begin{aligned}
\nabla g(x, y, z) & =f_{x} \mathbf{i}+f_{y} \mathbf{j}-1 \mathbf{k} \\
\nabla g\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right) & =f_{x}\left(x_{0}, y_{0}\right) \mathbf{i}+f_{y}\left(x_{0}, y_{0}\right) \mathbf{j}-1 \mathbf{k} \\
\mathbf{n} & =f_{x}\left(x_{0}, y_{0}\right) \mathbf{i}+f_{y}\left(x_{0}, y_{0}\right) \mathbf{j}-1 \mathbf{k}
\end{aligned}
$$

Therefore the tangent plane has equation:

$$
\begin{gathered}
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-1\left(z-f\left(x_{0}, y_{0}\right)\right)=0 \\
z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
\end{gathered}
$$

And similiarly now if (x, y) is close to $\left(x_{0}, y_{0}\right)$ then:

$$
f(x, y) \approx f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

(Note: The book rewrites this in a slightly different way which tends to be more confusing.)
This can then be used to approximate functions and is the first step in a 2D version of the Taylor Series (which we won't do).
Example: To approximate $\sqrt{3.02^{2}+6.95}$ we note this is close to $\sqrt{3^{2}+7}$ so we set $f(x, y)=$ $\sqrt{x^{2}+y}$ and use the approximation.
3. This can be expanded to 3D. For $f(x, y, z)$ if we have a point $\left(x_{0}, y_{0}, z_{0}\right)$ then if (x, y, z) is close to $\left(x_{0}, y_{0}, z_{0}\right)$ then

$$
f(x, y, z) \approx f\left(x_{0}, y_{0}, z_{0}\right)+f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)
$$

