Math 241 Section 13.8: Maxima and Minima
 Dr. Justin O. Wyss-Gallifent

1. Described (informally with a picture) maxima, minima, relative maxima and minima.

Definition: For a function f a critical point is a point where the function is defined and where either all the partial derivatives are zero or at least one partial derivative is undefined.
2. Finding relative max and min. Procedure:
(a) Find critical points.
(b) Find the discriminant $D(x, y)=f_{x} x f_{y} y-f_{x y}^{2}$
(c) For each CP:

- If $D\left(x_{0}, y_{0}\right)>0$ then check $f_{x} x\left(x_{0}, y_{0}\right)$. If + rel min. If - rel max.
- If $D\left(x_{0}, y_{0}\right)<0$ then saddle point.

Example: $f(x, y)=3 x^{2} y+y^{3}-3 x^{2}-3 y^{2}+2$
3. Finding absolute extrema for $f(x, y)$ on a closed bounded region. Procedure:
(a) Find all critical points inside the region. Take f at these point.
(b) Find the max and min of $f(x, y)$ on the edge. How this is done depends on f and the shape of the edge but the basic idea is to use the edge equation to change f into an equation involving one variable and then work it out intuitively.
(c) Take the largest value and smallest value from Steps 1 and 2.

Example: $f(x, y)=2 x^{2}-3 y^{2}$ on $x^{2}+y^{2} \leq 4$.
Example: $f(x, y)=x^{2}+y^{2}$ on the triangle with corners $(0,0),(5,0),(0,3)$.

