Math 241 Section 14.2: Double Integrals in Polar
Dr. Justin O. Wyss-Gallifent

1. Intro: Sometimes \(R \) can be easier to describe using polar. A region is described in polar as being between two angles \(\theta = \alpha \) and \(\theta = \beta \) and between two functions \(r = N(\theta) \) and \(r = F(\theta) \) where \(N \) is nearer to the origin and \(F \) is further from the origin.

2. Polar functions to rememeber:
 - Circles: \(r = a \), \(r = a \cos \theta \), \(r = a \sin \theta \)
 - Cardioids: \(r = a + a \cos \theta \), \(r = a + a \sin \theta \)
 - Converting rectangular: For example \(x = 2 \) becomes \(r \cos \theta = 2 \) or \(r = 2 \sec \theta \).

3. If \(R \) is described in polar then:
 \[
 \int \int_R f(x, y) \, dA = \int_\alpha^\beta \int_{N(\theta)}^{F(\theta)} f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta
 \]
 Note 1: the \(f(r \cos \theta, r \sin \theta) \) means convert \(f \) into polar.
 Note 2: Do not forget the additional \(r \). We’ll have a good explanation of this later.
 Example: \(\int \int_R x \, dA \) where \(R \) is the semicircle \(x^2 + y^2 \leq 9 \) with \(x \geq 0 \).
 Example: \(\int \int_R 1 \, dA \) where \(R \) is the region inside \(r = 1 + \cos \theta \) and outside \(r = 1 \).

4. Note about 14.1 and 14.2: Sometimes an iterated integral has been set up one way (VS, HS, P) and is easier another way. In this case we might rewrite it.
 Example: The integral
 \[
 \int_0^1 \int_{x\sqrt{3}}^{\sqrt{4-x^2}} \sqrt{x^2 + y^2} \, dy \, dx
 \]
 is particular icky. The region \(R \) however is simply the pie-slice in the first quadrant inside \(r = 2 \) and between \(\theta = \pi/3 \) and \(\theta = \pi/2 \). Therefore we can rewrite it as
 \[
 \int_{\pi/3}^{\pi/2} \int_0^2 r^2 \, dr \, d\theta
 \]
 which is much more manageable.