Math 241 Section 14.2: Double Integrals in Polar
 Dr. Justin O. Wyss-Gallifent

1. Intro: Sometimes R can be easier to describe using polar. A region is described in polar as being between two angles $\theta=\alpha$ and $\theta=\beta$ and between two functions $r=N(\theta)$ and $r=F(\theta)$ where N is nearer to the origin and F is further from the origin.
2. Polar functions to rememeber:

- Circles: $r=a, r=a \cos \theta, r=a \sin \theta$
- Cardioids: $r=a+a \cos \theta, r=a+a \sin \theta$
- Converting rectangular: For example $x=2$ becomes $r \cos \theta=2$ or $r=2 \sec \theta$.

3. If R is described in polar then:

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{N(\theta)}^{F(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Note 1: the $f(r \cos \theta, r \sin \theta)$ means convert f into polar.
Note 2: Do not forget the additional r. We'll have a good explanation of this later.
Example: $\iint_{R} x d A$ where R is the semicircle $x^{2}+y^{2} \leq 9$ with $x \geq 0$.
Example: $\iint_{R} 1 d A$ where R is the region inside $r=1+\cos \theta$ and outside $r=1$.
4. Note about 14.1 and 14.2: Sometimes an iterated integral has been set up one way (VS, HS, P) and is easier another way. In this case we might rewrite it.
Example: The integral

$$
\int_{0}^{1} \int_{x \sqrt{3}}^{\sqrt{4-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x
$$

is particular icky. The region R however is simply the pie-slice in the first quadrant inside $r=2$ and between $\theta=\pi / 3$ and $\theta=\pi / 2$. Therefore we can rewrite it as

$$
\int_{\pi / 3}^{\pi / 2} \int_{0}^{2} r^{2} d r d \theta
$$

which is much more manageable.

