Math 241 Section 14.5: Triple Integrals in Polar
 Dr. Justin O. Wyss-Gallifent

1. Introduction: Cylindrical is like polar plus z however many surfaces can look strange in cylindrical. Examples:
(a) $z=x^{2}+y^{2}$ becomes $z=r^{2}$.
(b) $z=\sqrt{x^{2}+y^{2}}$ becomes $z=r$.
(c) $x^{2}+y^{2}+z^{2}=9$ becomes $r^{2}+z^{2}=9$ or the top half $z=\sqrt{9-r^{2}}$.
(d) $z=2-x-y$ becomes $z=2-r \cos \theta-r \sin \theta$.
(e) $r=\sin \theta$ becomes a cylinder, as does $r=\cos \theta$ and $r=3$.
2. The method: If R is parametrized in polar then:

$$
\iiint_{D} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{N(\theta)}^{F(\theta)} \int_{\text {Floor }(r, \theta)}^{\operatorname{Ceiling}(r, \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

As with triple integrals in rectangular the first two integrals take care of R. The top and bottom functions must be rewritten in terms of r and θ and the integrand must be rewritten too.
Example: The mass of the ice-cream cone inside $\left.z=\sqrt{(} 3 x^{2}+3 y^{2}\right)$ and inside $x^{2}+y^{2}+z^{2}=4$. It's often tricky to identify R and even the top and bottom functions are often confusing. Here I used $f(x, y, z)=z^{2}$ for the density.
Example: The volume of the solid inside $r=\sin (\theta)$, below $z=9-x^{2}-y^{2}$ and above the $x y$-plane

