Math 241 Section 14.5: Triple Integrals in Polar
Dr. Justin O. Wyss-Gallifent

1. Introduction: Cylindrical is like polar plus \(z \) however many surfaces can look strange in cylindrical.

Examples:
(a) \(z = x^2 + y^2 \) becomes \(z = r^2 \).
(b) \(z = \sqrt{x^2 + y^2} \) becomes \(z = r \).
(c) \(x^2 + y^2 + z^2 = 9 \) becomes \(r^2 + z^2 = 9 \) or the top half \(z = \sqrt{9 - r^2} \).
(d) \(z = 2 - x - y \) becomes \(z = 2 - r \cos \theta - r \sin \theta \).
(e) \(r = \sin \theta \) becomes a cylinder, as does \(r = \cos \theta \) and \(r = 3 \).

2. The method: If \(R \) is parametrized in polar then:

\[
\int \int \int_D f(x,y,z)\,dV = \int_\alpha^\beta \int_{\text{Floor}(r,\theta)}^{\text{Ceiling}(r,\theta)} \int_{N(\theta)}^{F(\theta)} f(r \cos \theta, r \sin \theta, z) \,r \,dz \,dr \,d\theta
\]

As with triple integrals in rectangular the first two integrals take care of \(R \). The top and bottom functions must be rewritten in terms of \(r \) and \(\theta \) and the integrand must be rewritten too.

Example: The mass of the ice-cream cone inside \(z = \sqrt{(3x^2 + 3y^2)} \) and inside \(x^2 + y^2 + z^2 = 4 \). It’s often tricky to identify \(R \) and even the top and bottom functions are often confusing. Here I used \(f(x, y, z) = z^2 \) for the density.

Example: The volume of the solid inside \(r = \sin(\theta) \), below \(z = 9 - x^2 - y^2 \) and above the \(xy \)-plane