Math 241 Section 14.5: Triple Integrals in Polar Dr. Justin O. Wyss-Gallifent

- 1. Introduction: Cylindrical is like polar plus z however many surfaces can look strange in cylindrical. Examples:
 - (a) $z = x^2 + y^2$ becomes $z = r^2$.
 - (b) $z = \sqrt{x^2 + y^2}$ becomes z = r.
 - (c) $x^2 + y^2 + z^2 = 9$ becomes $r^2 + z^2 = 9$ or the top half $z = \sqrt{9 r^2}$.
 - (d) z = 2 x y becomes $z = 2 r \cos \theta r \sin \theta$.
 - (e) $r = \sin \theta$ becomes a cylinder, as does $r = \cos \theta$ and r = 3.
- 2. The method: If R is parametrized in polar then:

$$\int \int \int_D f(x, y, z) dV = \int_{\alpha}^{\beta} \int_{N(\theta)}^{F(\theta)} \int_{\text{Floor}(r, \theta)}^{\text{Ceiling}(r, \theta)} f(r \cos \theta, r \sin \theta, z) r \, dz \, dr \, d\theta$$

As with triple integrals in rectangular the first two integrals take care of R. The top and bottom functions must be rewritten in terms of r and θ and the integrand must be rewritten too.

Example: The mass of the ice-cream cone inside $z = \sqrt{(3x^2 + 3y^2)}$ and inside $x^2 + y^2 + z^2 = 4$. It's often tricky to identify R and even the top and bottom functions are often confusing. Here I used $f(x, y, z) = z^2$ for the density.

Example: The volume of the solid inside $r = \sin(\theta)$, below $z = 9 - x^2 - y^2$ and above the xy-plane