Math 241 Section 14.6: Triple Integrals in Spherical
 Dr. Justin O. Wyss-Gallifent

1. Introduction: Introduce spherical coordinates. We locate a point using three variables:
θ is the familiar one, the angle from the positive x-axis.
ϕ is the angle measured from the positive z-axis downwards, so $0 \leq \phi \leq \pi$. ρ is the distance from the origin.

Graph some points (very few) and then show a picture which illustrates how to change these to x, y, z which we'll need for substitution:

$$
\begin{aligned}
x & =\rho \sin \phi \cos \theta \\
y & =\rho \sin \phi \sin \theta \\
z & =\rho \cos \phi \\
x^{2}+y^{2}+z^{2} & =\rho^{2}
\end{aligned}
$$

2. Classic examples of equations in spherical:
(a) Sphere $\rho=3$
(b) Cone $\phi=\pi / 4$
(c) The plane $z=2$ becomes $\rho \cos \phi=2$ or $\rho=2 \sec \phi$.
3. Describing objects in spherical: A solid D will be described as having:

$$
\begin{aligned}
\alpha & \leq \theta \leq \beta \\
\gamma & \leq \phi \leq \delta \\
\operatorname{near}(\theta, \phi) & \leq \rho \leq \operatorname{far}(\theta, \phi)
\end{aligned}
$$

4. Integration: If D is described in spherical then:

$$
\iiint_{D} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{\gamma}^{\delta} \int_{n e a r(\theta, \phi)}^{f a r(\theta, \phi)} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

NOTE 1: The $\rho^{2} \sin \phi$ is like the polar/cylindrical r. We just have to remember for now to put it there.

NOTE 2: The book allows the middle iterated integral to have limits which are functions of theta - see the $h_{1}(\theta)$ and $h_{2}(\theta)$ in Thm 14.11 on p.947. In practice these are always constants so I just gave those limits as γ and δ.
Example: The solid between the spheres $\rho=1$ and $\rho=2$.
Example: If we just take the top half of the previous.
Example: If we just take the part of the previous having $x \leq 0, y \geq 0$ and $z \geq 0$. This one is nice to draw.

Example: The volume of the ice-cream cone inside $\phi=\pi / 6$ and and inside $\rho=5$.
Example: If we chop off the bottom at $z=1$.

