Math 241 Section 14.8: Change of Variables
 Dr. Justin O. Wyss-Gallifent

1. Intro Part I: For double integrals, sometimes VS, HS and polar are insufficient for parallelograms, ellipses and other quirky shapes.
2. Intro Part II: Historical note - consider the integral $\int_{0}^{1} \sqrt{1-x^{2}} d x$. We put $x=\sin u$ and get $\int_{0}^{\pi / 2} \sqrt{1-\sin ^{2} u} \cos u d u$ and so three things have changed:
The interval changes, the integrand changes, and the $d x$ is replaced by $\cos u d u$.
3. A change of vars is basically a 2D version of this. Our goal is to do this for a double integral. The change of variables formula works as follows: If R is a not-so-nice region and we want to evaluate $\iint_{R} f(x, y) d A$ and if we can do a substitution $x=g(u, v)$ and $y=h(u, v)$ as functions of u, v which changes R (in the $x y$-plane) into S (in the $u v$-plane) then:

$$
\iint_{R} f(x, y) d A=\iint_{S} f(g(u, v), h(u, v))|J(x, y)| d A \text { where } J(x, y)=\left|\begin{array}{l}
\frac{\partial x}{\partial u} \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} \frac{\partial y}{\partial v}
\end{array}\right|
$$

Notes:

- Often the change of variables is given by $u=$ and $v=$. In this case we need to solve for $x=$ and $y=$ only if we need them for the integrand.
- We can often use: $J(x, y)=1 \div J(u, v)$ where $J(u, v)=\left|\begin{array}{l}\frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} \frac{\partial v}{\partial y}\end{array}\right|$

4. Three classic examples.

Example: Find $\iint_{R} x d A$ where R is the parallelogram bounded by $y=1-x, y=3-x, y=\frac{1}{2} x+1$, and $y=\frac{1}{2} x+4$. We rewrite the edges as $x+y=1, x+y=3, y-\frac{1}{2} x=1$, and $y-\frac{1}{2} x=4$ and substitute $u=x+y$ and $v=y-\frac{1}{2} x$. Then S is a rectangle. Since the integrand is just x we need to solve for x. We might as well find y too and then find $J(x, y)$ directly.
Note: If the integrand had been something like $x+y$ then we know it becomes u and we could have used the alternate method for $J(x, y)$.
Example: Find $\iint_{R} y^{2} d A$ where R is the ellipse $x^{2} / 9+y^{2} / 4=1$. We rewrite as $(x / 3)^{2}+(y / 2)^{2}=1$ and substitute $u=x / 3$ and $v=y / 2$. Then S is a circle and then we go to polar.
Example: Find $\iint_{R} \frac{x}{y} d A$ where R is the region bounded by $y=x, y=2 x, y=\frac{1}{x}$, and $y=\frac{2}{x}$. We rewrite the edges as $\frac{y}{x}=1, \frac{y}{x}=3, x y=1$ and $x y=2$ and then substitute $u=\frac{y}{x}$ and $v=x y$. Then S is a rectangle. Notice here that the integrand is y / x which is u so we never need to solve for x and y directly so we can use the alternate method for $J(x, y)$.

