Math 241 Section 15.1: Vector Fields
 Dr. Justin O. Wyss-Gallifent

1. Definition: A vector field is a function which assigns a vector to each point. This can either be 2D:
Example: $\mathbf{F}(x, y)=x y \mathbf{i}+2 x^{2} \mathbf{j}$
Or it can be 3D:
Example: $\mathbf{F}(x, y, z)=y e^{z} \mathbf{i}+x z \mathbf{j}+y^{2} \mathbf{k}$
We can sketch a VF by simply plotting a vector at each point for a nice selection of points.
Example: $\mathbf{F}(x, y)=\frac{1}{5} y \mathbf{i}-\frac{1}{5} x \mathbf{j}$ is good to draw.
Vector fields can be thought of as representing any sort of force field, fluid flow, etc.
2. Associated definitions. For a vector field $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ define:
(a) Divergence: $\nabla \cdot \mathbf{F}=M_{x}+N_{y}+P_{z}$. This is a scalar and measures net gain/loss of fluid at a point. A source is a point with positive divergence and a sink is a point with negative divergence.
Example: Anything.
(b) Curl: $\nabla \times \mathbf{F}$ which is defined by taking the cross-product $\left(\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\right) \times \mathbf{F}$ and doing the corresponding partials. Loosely speaking the curl measures the axis of rotation of the fluid at a point.
Example: Anything.
3. Conservative vector fields.
(a) We've seen VF before. Recall the gradient $\nabla f=f_{x} \mathbf{i}+f_{y} \mathbf{j}+f_{z} \mathbf{k}$. This gives us a VF.

Example: If $f(x, y, z)=x y^{2} z$ then $\nabla f=y^{2} z \mathbf{i}+2 x y z \mathbf{j}+x y^{2} \mathbf{k}$.
Definition: A vector field \mathbf{F} is conservative if there is some f so that $\mathbf{F}=\nabla f$. This f is called a potential function.
Example: $\mathbf{F}(x, y, z)=y^{2} z \mathbf{i}+2 x y z \mathbf{j}+x y^{2} \mathbf{k}$ is conservative.
(b) Theorems:

- If \mathbf{F} is conservative then $\nabla \times \mathbf{F}=\mathbf{0}$.
- If $\nabla \times \mathbf{F} \neq \mathbf{0}$ then \mathbf{F} is not conservative.

Example: $\mathbf{F}(x, y, z)=x y \mathbf{i}+y \mathbf{j}+x z \mathbf{k}$ is not because $\nabla \times \mathbf{F} \neq \mathbf{0}$.

- If $\nabla \times \mathbf{F}=\mathbf{0}$ and if \mathbf{F} is defined at all (x, y, z) then \mathbf{F} is conservative.
(c) Finding a potential function: If \mathbf{F} is conservative then it will be useful to find a corresponding potential function f. This can often be guessed but it's useful to have a process. Here's an example with a process:
Example: $\mathbf{F}(x, y, z)=2 x y \mathbf{i}+\left[x^{2}+z\right] \mathbf{j}+[y+2 z] \mathbf{k}$
Process: We want $f(x, y, z)$ with $f_{x}(x, y, z)=2 x y, f_{y}(x, y, z)=x^{2}+z$ and $f_{z}(x, y, z)=y+2 z$.
Step 1: Since $f_{x}(x, y, z)=2 x y$ we have $f(x, y, z)=x^{2} y+g(y, z)$.
Step 2: From here $f_{y}(x, y, z)=x^{2}+g_{y}(y, z)$ but this must equal $x^{2}+z$ so $x^{2}+g_{y}(y, z)=x^{2}+z$ so $g_{y}(y, z)=z$ so $g(y, z)=y z+h(z)$ and so $f(x, y, x)=x^{2} y+y z+h(z)$.
Step 3: From here $f_{z}(x, y, z)=y+h^{\prime}(z)$ but this must equal $y+2 z$ so $y+h^{\prime}(z)=y+2 z$ so $h^{\prime}(z)=2 z$ so $h(z)=z^{2}+C$ and so $f(x, y, z)=x^{2} y+y z+z^{2}+C$.
Since C can be any constant we typically use $C=0$.

