Math 241 Section 15.2: Line Integrals of Functions and VFs Dr. Justin O. Wyss-Gallifent

1. Line Integrals of Functions:
(a) Situation: If C is a curve representing a wire and if $f(x, y, z)$ is the density at (x, y, z) then we can ask the mass. This is the line integral of $f(x, y, z)$ over C denoted $\int_{C} f(x, y, z) d s$.
(b) Evaluation (Only Way): We parametrize C as $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ for $a \leq t \leq b$ and then

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t))\left\|\mathbf{r}^{\prime}(t)\right\| d t
$$

Example: C is the semicircle $x^{2}+y^{2}=4$ with $y \geq 0$ and density $f(x, y)=y$.
2. Line Integrals of Vector Fields:
(a) Situation: If C is a curve representing the path of an object through a vector field (force field) $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ we can ask the work done by F on the object. This is the line integral of $\mathbf{F}(x, y, z)$ over C denoted either $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ or $\int_{C} M d x+N d y+P d z$.
(b) Evaluation (Way 1 of 4): We parametrize C as $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$ for $a \leq t \leq b$ and then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

Example:
Example:
(c) Note 1: Direction of C matters, changing the direction negates the integral, and why.
(d) Note 2: Notation can be confusing. Observe the difference between $\int_{C} x d x, \int_{C} x d s, \int_{a}^{b} x d x$.

