Math 241 Section 15.3: The Fundamental Theorem of Line Integrals Dr. Justin O. Wyss-Gallifent

- 1. Reminder about how the Fundamental Theorem of Calculus works. It sometimes helps students see the analogy. Plus this analogy arises later in other theorems.
- 2. FTOLI: If \mathbf{F} is conservative with potential function f then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(\text{endpoint of } C) - f(\text{startpoint of } C)$$

Example: Draw a really awful curve in 2D but make the endpoints clear. Example: Give $\mathbf{r}(t)$ so we have to find the endpoints via \mathbf{r} in that case.

- 3. Notes:
 - (a) **F** MUST BE CONSERVATIVE!!!
 - (b) If **F** is conservative and C is closed then $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$.
 - (c) These problems can also appear with $\int_C M dx + N dy + P dz$ notation.
 - (d) If \mathbf{F} is conservative then we say the integral is independent of path.