1. Reminder about how the Fundamental Theorem of Calculus works. It sometimes helps students see the analogy. Plus this analogy arises later in other theorems.

2. FTOLI: If \mathbf{F} is conservative with potential function f then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(\text{endpoint of } C) - f(\text{startpoint of } C)$$

Example: Draw a really awful curve in 2D but make the endpoints clear.
Example: Give $\mathbf{r}(t)$ so we have to find the endpoints via \mathbf{r} in that case.

3. Notes:

 (a) \mathbf{F} MUST BE CONSERVATIVE!!!
 (b) If \mathbf{F} is conservative and C is closed then $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$.
 (c) These problems can also appear with $\int_C M \, dx + N \, dy + P \, dz$ notation.
 (d) If \mathbf{F} is conservative then we say the integral is independent of path.