Math 241 Section 15.5: Surface Integrals of Functions
 Dr. Justin O. Wyss-Gallifent

1. Intro: Suppose Σ is a surface and $f(x, y, z)$ is defined at each point in Σ. If we chop Σ into little rectangles and take the area of each multiplied by f at some point in the rectangle, then let the size of the rectangles to go zero, the result is $\iint_{\Sigma} f d S$. Some uses:

- If $f(x, y, z)=1$ we get the surface area of Σ.
- If $f(x, y, z)$ is the density (mass or electrical charge or whatever) at any point is $f(x, y, z)$ then we get the total (mass,charge, whatever).

2. Method of evaluation; Only one way:

Parametrize Σ as $\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}$ for u, v in the region R in the $u v$-plane (R is usually described simply by inequalities on u and v) and then:

$$
\iint_{\Sigma} f(x, y, z) d S=\iint_{R} f(x(u, v), y(u, v), z(u, v))\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d A
$$

Note: We're used to using R to denote a region in the $x y$-plane but that's not really the case here. Instead R is a region in the $u v$-plane for whatever variables we're using, but it's easier to think of R as a set of (u, v) usually described by a pair of inequalities.
3. Examples

Example: $f(x, y, z)=x y z$ for Σ the part of $z=9-x^{2}-y^{2}$ above the rectangle with $0 \leq x \leq 1$ and $0 \leq y \leq 2$. Here we use $\mathbf{r}(x, y)$.
Example: $f(x, y, z)=x y z$ for Σ the part of the cylinder $x^{2}+y^{2}=4$ between $z=1,5$. Here we use $\mathbf{r}(z, \theta)$.
Example: $f(x, y, z)=x^{2} z$ for Σ the part of $z=7-x$ inside $r=2 \sin (\theta)$. Here we use $\mathbf{r}(r, \theta)$. This is often a bit confusing because we have $0 \leq \theta \leq \pi$ (generally okay) and $0 \leq r \leq 2 \sin \theta$ (often confusing).

NOTE: An important point - I really want to be sure that this is very step-by-step, meaning we go from an integral over Σ to an integral over R to an iterated integral and that we don't skip the middle step.

