Math 241 Section 15.7: Stokes' Theorem
 Dr. Justin O. Wyss-Gallifent

1. Introduction: Stokes' Theorem can be thought of as a version of Green's Theorem which applies to surface in 3D space, although it would be more accurate to say that Green's Theorem is a version of Stokes' Theorem when the surface is in the $x y$-plane.
2. Induced Orientations: If C is the edge of Σ and if C has an orientation (direction) then C induces an orientation on Σ using the right-hand rule; if your fingers follow C 's orientation then your thumb points in an orientation for Σ. We say Σ has the induced orientation from R.
This also works in reverse but we will not need it this way.
3. Stokes' Theorem: Suppose C is the edge of Σ and C is oriented. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{\Sigma}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S
$$

where Σ has the induced orientation from R.
Note: Stokes' Theorem leads to a multiple-step procedure:

$$
\int_{C} \underset{\text { Stokes }}{\longrightarrow} \iint_{\Sigma} \underset{\text { Param } \Sigma}{\longrightarrow} \pm \iint_{R} \underset{\text { Use Ineq }}{\longrightarrow} \int_{*}^{*} \int_{*}^{*} \underset{\text { Grunt }}{\longrightarrow} \text { Value }
$$

So be clear about showing all necessary steps.
Example: Suppose C is the curve on the surface $z=9-x^{2}$ lying above the triangle with vertices $(0,0,0),(2,0,0),(0,1,0)$ and having counterclockwise orientation when viewed from above. Evaluate $\int_{C} 2 y d x+x z d y+z d z$.
Example: Suppose C is the intersection of $x^{2}+z^{2}=16$ with $y=9-x^{2}$ having clockwise orientation when viewed from the positive y-axis. Evaluate $\int_{C}\left(x^{2} \mathbf{i}+x y \mathbf{j}+x z \mathbf{k}\right) \cdot d \mathbf{r}$.

