1. A Bit of History and Introduction: Suppose \(H(x, y) \) is a function and \(y \) is a function of \(x \). Then by the chain rule we know \(\frac{d}{dx} H(x, y) = H_x(x, y) + H_y(x, y) \frac{dy}{dx} \).

So now consider the following differential equation:

\[
3x^2y^2 + 2x^3y \frac{dy}{dx} = 0
\]

You may notice that the left side looks like the result of the chain rule and is actually so, when \(H(x, y) = x^3y^2 \). Don’t worry about if there’s a formal method for where \(H(x, y) \) comes from for now, just notice that \(H_x(x, y) = 3x^2y^2 \) and \(H_y(x, y) = 2x^3y \). What this means is that the differential equation may be rewritten by undoing the chain rule on the left:

\[
3x^2y^2 + 2x^3y \frac{dy}{dx} = 0
\]

So then when the derivative of something is zero, that thing is a constant:

\[
\frac{d}{dx} [x^3y^2] = 0
\]

\[
x^3y^2 = C
\]

and we’ve solved it, at least implicitly!

2. Definition and Method: A differential equation is *exact* if it has the form:

\[
H_x(x, y) + H_y(x, y) \frac{dy}{dx} = 0
\]

for some function \(H(x, y) \). When a differential equation is exact, solving implicitly is as easy as finding \(H(x, y) \) and setting \(H(x, y) = C \) for any constant.

Here are a few exact differential equations. For each, \(H(x, y) \) is written in the middle and the implicit solution to the right.

<table>
<thead>
<tr>
<th>Exact DE</th>
<th>(H(x, y))</th>
<th>Solution to DE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y + x \frac{dy}{dx} = 0)</td>
<td>(H(x, y) = xy)</td>
<td>(xy = C)</td>
</tr>
<tr>
<td>(y + (x + 2y) \frac{dy}{dx} = 0)</td>
<td>(H(x, y) = xy + y^2)</td>
<td>(xy + y^2 = C)</td>
</tr>
<tr>
<td>(\frac{1}{y} - x \frac{dy}{dx} = 0)</td>
<td>(H(x, y) = \frac{x}{y})</td>
<td>(\frac{x}{y} = C)</td>
</tr>
<tr>
<td>(y \cos(xy) + x \cos(xy) \frac{dy}{dx} = 0)</td>
<td>(H(x, y) = \sin(xy))</td>
<td>(\sin(xy) = C)</td>
</tr>
</tbody>
</table>
3. **Detecting Exactness and Finding H:** There is a trick to detecting whether a differential equation is exact. If the differential equation has the form:

\[M + N \frac{dy}{dx} = 0 \]

then it is exact if and only if \(M_y = N_x \). You can test all the ones above. Then you can check that this next one is not exact:

\[xy + y \frac{dy}{dx} = 0 \]

In this case \(M_y = x \) and \(N_x = 0 \). Not equal, not exact.

Once you know that your differential equation is exact, often you can guess at \(H(x, y) \). However if you’re struggling, there’s a systematic method for finding it. Here’s an example from above:

\[y + (x + 2y) \frac{dy}{dx} = 0 \]

We want \(H(x, y) \) with (A) \(H_x(x, y) = y \) and (B) \(H_y(x, y) = x + 2y \). Observe:

We want (A):

\[H_x(x, y) = y \]

This tells us that:

\[H(x, y) = xy + h(y) \]

From this line:

\[H_y(x, y) = x + h'(y) \]

But from (B):

\[H_y(x, y) = x + 2y \]

Set these equal:

\[x + h'(y) = x + 2y \]

Solve for \(h'(y) \):

\[h'(y) = 2y \]

Find \(h(y) \):

\[h(y) = y^2 + D \]

Put back into second line:

\[H(x, y) = xy + y^2 + D \]

We can choose any \(D \) so choose \(D = 0 \) to get \(H(x, y) = xy + y^2 \).

Example: Find \(H(x, y) \) to solve \(x + 1 + \frac{1}{y} = \frac{xy}{y^2} \frac{dy}{dx} = 0 \). Follow the exact procedure above, here we want (A) \(H_x(x, y) = x + 1 + \frac{1}{y} \) and (B) \(H_y(x, y) = -\frac{x}{y^2} \):

We want (A):

\[H_x(x, y) = x + 1 + \frac{1}{y} \]

This tells us that:

\[H(x, y) = \frac{x}{2} y^2 + x + \frac{y}{y} + h(y) \]

From this line:

\[H_y(x, y) = -\frac{x}{y^2} + h'(y) \]

But from (B):

\[H_y(x, y) = -\frac{x}{y^2} \]

Set these equal:

\[-\frac{x}{y^2} + h'(y) = -\frac{x}{y^2} \]

Solve for \(h'(y) \):

\[h'(y) = 0 \]

Find \(h(y) \):

\[h(y) = D \]

Put back into second line:

\[H(x, y) = \frac{1}{2} x^2 + x + \frac{x}{y} + D \]

Then choose \(D = 0 \) to get \(H(x, y) = \frac{1}{2} x^2 + x + \frac{x}{y} \) and the solution to our DE is \(\frac{1}{2} x^2 + x + \frac{x}{y} = C \).
4. **Almost Exact:** It’s not uncommon to have a differential equation which is not quite exact but can be made exact by multiplying through by some function called an *integrating factor*. For example the differential equation

\[2y + x \frac{dy}{dx} = 0 \]

is not exact because \(M_y = 2 \) and \(N_x = 1 \) so \(M_y \neq N_x \). But if we multiply through by \(x \) we get the new differential equation

\[2xy + x^2 \frac{dy}{dx} = 0 \]

which is exact because \(M_y = 2x \) and \(N_x = 2x \). Now \(H(x, y) = x^2 y \) and the solution is \(x^2 y = C \).

The question is how to come up with this integrating factor. This can be challenging but we’ll look at two simple cases. The key is that we’ve got our non-exact differential equation

\[M + N \frac{dy}{dx} = 0 \]

and we wish to multiply through by some \(\mu(x, y) \) such that the new differential equation

\[M \mu + N \mu \frac{dy}{dx} = 0 \]

is exact. To be exact we’d need

\[(M \mu)_y = (N \mu)_x \]

\[M_y \mu + M \mu_y = N_x \mu + N \mu_x \]

While this seems tricky (it’s actually a partial differential equation!) we will only encounter the special cases when \(\mu \) is a function of just \(x \) or just \(y \).

The key is to take the above equation and say:

- If \(\mu \) is a function of only \(x \) then \(\mu_y = 0 \). Rewriting this equation, can we see a \(\mu(x) \) which would make this equation true?
- If \(\mu \) is a function of only \(y \) then \(\mu_x = 0 \). Rewriting this equation, can we see a \(\mu(y) \) which would make this equation true?

Note: We will only look at examples where \(\mu \) is either a function of only \(x \) or only \(y \) and where \(\mu \) is easy to figure out visually. Going beyond this can get seriously difficult.
5. Examples:

Example 1: Consider the non-exact differential equation we’ve seen before:

\[2y + x \frac{dy}{dx} = 0 \]

Here \(M = 2y \) and \(N = x \). We’d like:

\[
M_y \mu + M \mu_y = N_x \mu + N \mu_x \\
2\mu + 2y\mu_y = 1\mu + x\mu_x
\]

If \(\mu = \mu(x) \) then \(\mu_y = 0 \) and this becomes:

\[
2\mu = \mu + x\mu_x \\
x\mu_x = \mu \\
\mu_x = \frac{\mu}{x}
\]

We can see that \(\mu(x) = x \) does the job. This is then our integrating factor and we multiply our original differential equation through by it to get the exact differential equation:

\[2xy + x^2 \frac{dy}{dx} = 0 \]

which has \(H(x, y) = x^2y \) and solution \(x^2y = C \).

Example 2: Consider the non-exact differential equation

\[y + (x + xy) \frac{dy}{dx} = 0 \]

Here \(M = y \) and \(N = x + xy \). We’d like:

\[
M_y \mu + M \mu_y = N_x \mu + N \mu_x \\
1\mu + y\mu_y = (1 + y)\mu + (x + xy)\mu_x
\]

If \(\mu = \mu(y) \) then \(\mu_x = 0 \) and this becomes:

\[
1\mu + y\mu_y = (1 + y)\mu \\
\mu + y\mu_y = \mu + y\mu \\
\mu_y = \mu
\]

We can see that \(\mu(y) = e^y \) does the job. This is then our integrating factor and we multiply our original differential equation through by it to get the exact differential equation:

\[ye^y + (xe^y + xye^y) \frac{dy}{dx} = 0 \]

This has \(H(x, y) = xye^y \) and solution \(xye^y = C \).