1. Introduction

For the last chapter we’ve been focusing on finding a single solution $Y_P(t)$ to a non-homogeneous linear differential equation with constant coefficients where $f(t)$ is a familiar form.

What we’re going to do now is remove both the restriction that the coefficients be constant and the restriction that $f(t)$ is of our familiar form. We will restrict with second-order though, and we’ll make sure the coefficient of y'' is 1 (linear normal form), which can easily be attained through division. The goal will be the same, to find some $Y_P(t)$, because again the general solution will be $Y(t) = Y_P(t) + c_1 Y_1(t) + c_2 Y_2(t)$ where $\{Y_1(t), Y_2(t)\}$ is the fundamental set for the homogeneous version.

It may seem like if we could do this then why would we need the previous chapter? The answer is that the method of this section gets extremely complicated for third and higher order and can be computationally intensive even for second order.

2. General Idea

The general idea is to start with the fundamental set $\{Y_1, Y_2\}$ for the homogeneous version and ask a simple question - is it possible to find two functions $u_1(t)$ and $u_2(t)$ such that $y = u_1 Y_1 + u_2 Y_2$ is a solution to the nonhomogeneous version?

It turns out that simply plugging this y into the DE leaves us with quite a mess, but by adding a restriction we actually tidy things up a bit.

The restriction we add is that we insist that $u_1' Y_1 + u_2' Y_2 = 0$. If we insist upon this and in addition we plug $y = u_1 Y_1 + u_2 Y_2$ into the DE we get $u_1' Y_1' + u_2' Y_2' = f(t)$. So then finding u_1 and u_2 boils down to solving the system of equations

\[
\begin{align*}
 u_1' Y_1 + u_2' Y_2 &= 0 \\
 u_1' Y_1' + u_2' Y_2' &= f(t)
\end{align*}
\]

Conveniently this is easy to solve, yielding

\[
\begin{align*}
 u_1' &= -\frac{Y_2 f}{W[Y_1, Y_2]} \quad \text{and} \quad u_2' = \frac{Y_1 f}{W[Y_1, Y_2]}
\end{align*}
\]

where W is the Wronskian (just there to be tidier). Then

\[
\begin{align*}
 u_1 &= -\int \frac{Y_2 f}{W[Y_1, Y_2]} \, dt \quad \text{and} \quad u_2 = \int \frac{Y_1 f}{W[Y_1, Y_2]} \, dt
\end{align*}
\]

where we may choose any integrals so we choose to make the constants zero.

In a nutshell we find u_1 and u_2 using the above integrals and then $Y_P(t) = u_1 Y_1 + u_2 Y_2$ is a solution to the nonhomogeneous DE.
3. Examples

Example: Consider \(y'' + y = \sec t \). Since the characteristic polynomial is \(z^2 + 1 \) with roots \(0 \pm 1i \) the fundamental set for the homogeneous version is \(\{ \cos t, \sin t \} \). We find

\[
W[Y_1, Y_2] = \det \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} = 1
\]

and then we simply evaluate:

\[
u_1 = -\int \frac{(\sin t)(\sec t)}{1} \, dt = -\int \tan t \, dt = \ln |\cos t| + C \quad \text{Choose } u_1 = \ln |\cos t| \\
u_2 = \int \frac{(\cos t)(\sec t)}{1} \, dt = \int 1 \, dt = t + C \quad \text{Choose } u_2 = t
\]

Thus a particular solution to the nonhomogeneous version is

\[Y_p(t) = u_1 Y_1 + u_2 Y_2 = (\ln |\cos t|) \cos t + t \sin t\]

and the general solution to the nonhomogeneous version is

\[Y(t) = (\ln |\cos t|) \cos t + t \sin t + c_1 \cos t + c_2 \sin t\]

Example: Consider \(y'' - 3y' + 2y = t \). Since the characteristic polynomial is \(z^2 - 3z + 2 = (z-1)(z-2) \) with roots 1, 2 the fundamental set for the homogeneous version is \(\{ e^t, e^{2t} \} \). We find

\[
W[Y_1, Y_2] = \det \begin{bmatrix} e^t & e^{2t} \\ e^t & 2e^{2t} \end{bmatrix} = e^{3t}
\]

and then we simply evaluate (some IBP here):

\[
u_1 = -\int \frac{e^{2t}}{e^t} \, dt = -\int te^{-t} \, dt = te^{-t} - e^{-t} + C \quad \text{Choose } u_1 = te^{-t} - e^{-t} \\
u_2 = \int \frac{e^t}{e^{2t}} \, dt = \int te^{-2t} = -\frac{1}{2}te^{-2t} - \frac{1}{4}e^{-2t} + C \quad \text{Choose } u_2 = -\frac{1}{2}te^{-2t} - \frac{1}{4}e^{-2t}
\]

Thus a particular solution to the nonhomogeneous version is

\[Y_p(t) = u_1 Y_1 + u_2 Y_2 = (te^{-t} - e^{-t}) e^t + \left(-\frac{1}{2} \frac{te^{-2t} - \frac{1}{4} e^{-2t}}{e^t} \right) e^{2t} = \frac{1}{2} t - \frac{3}{4}
\]

and the general solution to the nonhomogeneous version is

\[Y(t) = \frac{1}{2} t - \frac{3}{4} + c_1 e^t + c_2 e^{3t}\]

Side Note: The Method of Undetermined Coefficients is much nicer for this problem.
Example: Consider \((t^2+1)y'' - 2ty' + 2y = (t^2+1)^2\). First we rewrite as \(y'' - \frac{2t}{t^2+1}y' + \frac{2}{t^2+1}y = t^2 + 1\). It’s worth noting that even though this looks uglier the only thing it affects that we need is the right side. We have no technique for finding the fundamental set for the homogeneous version so I’ll just give it to you, it’s \(\{ t, t^2 - 1 \}\). We find

\[W[Y_1, Y_2] = \det \begin{bmatrix} t & t^2 - 1 \\ 1 & 2t \end{bmatrix} = t^2 + 1 \]

and then we simply evaluate:

\[u_1 = - \int \frac{(t^2-1)(t^2+1)}{t^2+1} \, dt = - \int t^2 - 1 \, dt = - \frac{1}{3}t^3 + t + C \quad \text{Choose } u_1 = - \frac{1}{3}t^3 + t \]

\[u_2 = \int \frac{(t)(t^2+1)}{t^2+1} \, dt = \int t \, dt = \frac{1}{2}t^2 + C \quad \text{Choose } u_2 = \frac{1}{2}t^2 \]

Thus a particular solution to the nonhomogeneous version is

\[Y_p(t) = u_1Y_1 + u_2Y_2 = \left(-\frac{1}{3}t^3 + t \right) t + \left(\frac{1}{2}t^2 \right) (t^2 - 1) = \frac{1}{6}t^4 + \frac{1}{2}t^2 \]

and the general solution to the nonhomogeneous version is

\[Y(t) = \frac{1}{6}t^4 + \frac{1}{2}t^2 + c_1t + c_2(t^2 - 1) \]

We can make this a pretty nice IVP by adding the condition \(Y(1) = 0\) and \(Y'(1) = 1\). Since \(Y'(t) = \frac{2}{3}t^3 + t + c_1 + 2c_2 t\) we then have

\[Y(1) = \frac{1}{6} + \frac{1}{2} + c_1 = 0 \]

\[Y'(1) = 2 \cdot \frac{2}{3}t + 1 + c_1 + 2c_2 = 1 \]

so then \(c_1 = -\frac{2}{3}\) and \(c_2 = 0\) so the specific solution to the IVP is

\[Y(t) = \frac{1}{6}t^4 + \frac{1}{2}t^2 - \frac{2}{3}t \]