1. Suppose a homogeneous second order differential equation has fundamental pair $\left\{t, t^{3}\right\}$. Solve the IVP with $y(2)=1$ and $y^{\prime}(2)=-3$.
2. A 0.2 kg weight stretches a spring 0.1 m . The system is submerged in oil with damping coefficient $\gamma=3$. The weight is then lowered by 0.2 m and released with a downward velocity of $1 \mathrm{~m} / \mathrm{s}$. There is no external force.
(a) Find the spring coefficient k.
(b) Write down but do not solve the initial value problem corresponding to this situation.
(c) Is this system underdamped, critically damped or overdamped? Show the associated calculation.
(d) Sketch a reasonable graph of the solution.
3. Write down the general solution to the differential equation $D^{5} y+4 D^{3} y=0$.
4. For the differential equation $y^{\prime \prime}-6 y^{\prime}+9 y=\left(t^{2}+3\right) e^{3 t}$ write down the undetermined $Y_{p}(t)$ which you would use in the Method of Undetermined Coefficients. Do not go further.
5. Use the Method of Undetermined Coefficients to find a specific solution $Y_{p}(t)$ to the differential equation

$$
y^{\prime \prime}+5 y^{\prime}-3 y=3 t+2
$$

6. Use Variation of Parameters to find a particular solution to the differential equation

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=t^{2}
$$

The homogeneous version has fundamental pair $\left\{t, t^{-2}\right\}$. Then write down the general solution.
7. Use the definition (not the table) to calculate $\mathcal{L}[3]$.
8. Use Laplace Transforms to solve the initial value problem

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0 \text { with } y(0)=0 \text { and } y^{\prime}(0)=-1
$$

9. Define the function:

$$
f(t)= \begin{cases}0 & \text { for } t<7 \\ (t-7)^{2} & \text { for } t \geq 7\end{cases}
$$

Solve the initial value problem:

$$
y^{\prime}-y=f(t) \quad \text { with } \quad y(0)=2
$$

