1. Rewrite $y^{\prime \prime}+5 y^{\prime}+6 y=0$ with $y(0)=2, y^{\prime}(0)=-4$ as a system of first-order differential equations. Do not solve.
2. Find a fundamental pair of solutions to the system:

$$
\begin{aligned}
x^{\prime} & =2 x+y \\
y^{\prime} & =-3 x+4 y
\end{aligned}
$$

3. Solve the initial value problem $\bar{x}^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \bar{x} \quad$ with $\bar{x}(0)=\left[\begin{array}{r}1 \\ -2\end{array}\right]$.
4. Tank 1 has volume of 100 Liters and Tank 2 has volume 500 Liters. Initially both are full with Tank 1 containing salt at $5 \mathrm{~g} / \mathrm{L}$ and Tank 2 containing salt at $8 \mathrm{~g} / \mathrm{L}$. The Tank 1 mixture is flowing from Tank 1 to Tank 2 at $4 \mathrm{~L} / \mathrm{min}$ while the Tank 2 mixture is flowing from Tank 2 to Tank 1 at $3 \mathrm{~L} / \mathrm{min}$. Fresh water is flowing into Tank 1 at $5 \mathrm{~L} / \mathrm{min}$ while the Tank 1 mixture flows out to a drain at $4 \mathrm{~L} / \mathrm{min}$. Water at $4 \mathrm{~g} / \mathrm{L}$ is flowing into Tank 2 at $6 \mathrm{~L} / \mathrm{min}$ while the Tank 2 mixture flows out to a drain at $10 \mathrm{~L} / \mathrm{min}$. Let x_{1} represent the amount of salt in Tank 1 at time t and x_{2} represent the amount of salt in Tank 2 at time t. Draw a tank picture for this situation and write down the corresponding system with initial values.
Warning: Check if the volumes are constant.
5. Consider the system

$$
\begin{aligned}
x^{\prime} & =a x+b y \\
y^{\prime} & =c x+d y
\end{aligned}
$$

(a) Find a criteria on a, b, c and/or d under which $(0,0)$ is neither a circle nor spiral.
(b) Find a criteria on a, b, c and/or d under which there is an entire line of stationary solutions.
6. Use Hamiltonian Methods to sketch a family of solutions to the system:

$$
\begin{array}{r}
x^{\prime}=x-3 x y^{2}+2 y \\
y^{\prime}=y^{3}-y
\end{array}
$$

7. Consider the predator-prey model given here:

$$
\begin{aligned}
& x^{\prime}=(3-2 x-y) x \\
& y^{\prime}=(-1+2 x) y
\end{aligned}
$$

This has stationary solutions $(0,0),(1.5,0)$ and $(0.5,2)$. The first two of these have:

$$
\begin{aligned}
& \partial^{2} \bar{F}(0,0)=\left[\begin{array}{rr}
3 & 0 \\
0 & -1
\end{array}\right] \text { with eigenpairs }\left(3,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \text { and }\left(-1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& \partial^{2} \bar{F}(1.5,0)=\left[\begin{array}{rr}
-3 & -1.5 \\
0 & 2
\end{array}\right] \text { with eigenpairs }\left(-3,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \text { and }\left(2,\left[\begin{array}{r}
-3 \\
10
\end{array}\right]\right) .
\end{aligned}
$$

(a) Find $\partial^{2} \bar{F}(0.5,2)$ and its eigenvalues (not eigenvectors).
(b) Sketch a reasonable family of solutions.
8. Why does it seem real-world unreasonable that a predator-prey model (with x the prey) could have an initial value problem with $\bar{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and with solution $\bar{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ satisfying $\lim _{t \rightarrow \infty} y(t)=0 ?$
9. Suppose x and y are cooperating species where x is restricted by natural resources but y is not. Draw a reasonable family of solutions for such a situation. Pick one solution NOT on an axis and explain in real-world terms what is happening and why it is reasonable.

