MATH 246: Exam 3 Sample 2

1. Rewrite the following second-order differential equation as a system of first-order:

$$
2 D^{2} y+t D y-5 y=\sin t
$$

2. Find a fundamental pair of solutions to the system:

$$
\bar{x}^{\prime}=\left[\begin{array}{rr}
5 & -2 \\
2 & 1
\end{array}\right] \bar{x}
$$

3. Solve the initial value problem

$$
\begin{array}{ll}
x_{1}^{\prime}=2 x_{1}+2 x_{2} & x_{1}(0)=2 \\
x_{2}^{\prime}=3 x_{1}+7 x_{2} & x_{2}(0)=-1
\end{array}
$$

4. Write down the differential equation corresponding to the following tank diagram. Assume the tanks start (do they remain?) full.

5. Consider the system:

$$
\bar{x}^{\prime}=\left[\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right] \bar{x}
$$

A fundamental matrix for this system is:

$$
\Psi(t)=\left[\begin{array}{rr}
1 & 2 t+1 \\
1 & 2 t
\end{array}\right]
$$

(a) Find the natural fundamental matrix $\Phi(t)$ associated to $t_{I}=1$.
(b) Use your answer to (a) to find the solutions to the IVP having $\bar{x}(1)=\left[\begin{array}{r}2 \\ -3\end{array}\right]$.
6. Use Hamiltonian Methods to sketch a family of solutions to the system:

$$
\begin{array}{r}
x^{\prime}=2 x^{2}+2 y \\
y^{\prime}=-1-4 x y
\end{array}
$$

7. Consider the competing species model given here:

$$
\begin{aligned}
x^{\prime} & =(20-2 x-y) x \\
y^{\prime} & =(20-2 y) y
\end{aligned}
$$

This has stationary solutions $(0,0),(10,0),(0,10)$ and $(5,10)$. The first three of these have:

$$
\begin{aligned}
& \partial^{2} \bar{F}(0,0)=\left[\begin{array}{rr}
20 & 0 \\
0 & 20
\end{array}\right] \text { with eigenpairs }\left(20,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \text { and }\left(20,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& \partial^{2} \bar{F}(10,0)=\left[\begin{array}{rr}
-20 & -10 \\
0 & 20
\end{array}\right] \text { with eigenpairs }\left(20,\left[\begin{array}{r}
1 \\
-4
\end{array}\right]\right) \text { and }\left(-20,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) . \\
& \partial^{2} \bar{F}(0,10)=\left[\begin{array}{rr}
10 & 0 \\
0 & -20
\end{array}\right] \text { with eigenpairs }\left(-20,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \text { and }\left(10,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) .
\end{aligned}
$$

(a) Find $\partial^{2} \bar{F}(5,10)$ and its eigenvalues (not eigenvectors).
(b) Sketch a reasonable family of solutions.
(c) Explain in real-world terms what would happen to an intial population of $(4,0.1)$.
(d) Explain in real-world terms what would happen to an intial population of $(100,0.1)$.

