MATH 246 Groupwork 1.7

Name:

\qquad

1. Consider the IVP:

$$
y^{\prime}=2 y+4 t \text { with } y(0)=2
$$

(a) Use Euler's Method with $n=2$ iterations of size $h=0.5$ to approximate $y(1)$ for the IVP. Fill these in a nice table.
(b) The solution to this IVP is $y(t)=3 e^{2 t}-2 t-1$. How does your approximation compare to the exact value?
2. Consider the IVP:

$$
y^{\prime}=\frac{2 t}{y^{2}}+t \text { with } y(1)=3
$$

Suppose both the Runge-Trapezoidal and the Runge-Midpoint Methods are used to approximate $y(2)$ with $n=10$ iterations of size $h=0.1$. Fill in the values which are missing from the following tables. Even though I have lots of digits (program output) you can approximate to two decimal digits for your inputs and outputs.

Runge Trapezoidal

i	t_{i}	y_{i}
0	1	3
1	1.1	3.12739516273153
2		3.26493404176817
3	1.3	3.4123878579216
4	1.4	
5	1.5	3.73632928179026
6	1.6	3.91255148850797
7		4.09814888993696
8	1.8	4.29305881576136
9	1.9	4.49723899829096
10	2	

Runge Midpoint

i	t_{i}	y_{i}
0	1	3
1	1.1	3.12741099337617
2	1.2	3.2649612309732
3	1.3	3.41242233447638
4	1.4	3.56960760999894
5	1.5	3.73636820336753
6		3.91258865797772
7	1.7	4.09818233884244
8	1.8	4.29308702238228
9		
10		

