MATH 246 Groupwork 2.1 \& 2.3

Name:

1. Put the following linear differential equations in normal form and determine the interval of existence (and uniqueness) for the solution to the associated initial value problem.
(a) $(t-1) y^{\prime \prime}+2 y^{\prime}+\left(\frac{t-1}{t^{2}-10 t}\right) y=\sqrt{20-t}$ with $y(12)=7$ and $y^{\prime}(12)=-1$.
(b) $(t-1) y^{\prime \prime}+2 y^{\prime}+\left(\frac{t-1}{t^{2}-10 t}\right) y=\sqrt{20-t}$ with $y(7)=12$ and $y^{\prime}(7)=0$.
(c) $y^{\prime \prime \prime}+\ln (-t)=\sqrt{t+2} y^{\prime}+t y$ with $y(-1)=0, y^{\prime}(-1)=60$ and $y^{\prime \prime}(-1)=\pi$.
2. For each of the following linear systems, if the system is homogeneous determine if it could have nontrivial solutions and if the system is nonhomogeneous determine if it has a single solution or not. Use determinants only.
(a) The system:

$$
\begin{array}{r}
x+3 y=3 \\
3 x-2 y=0
\end{array}
$$

(b) The system

$$
\begin{array}{r}
-x+6 y=0 \\
x-6 y=1
\end{array}
$$

(c) The system

$$
\begin{aligned}
-2 x+6 y & =0 \\
3 x+6 y & =0
\end{aligned}
$$

(d) The system

$$
\begin{aligned}
2 x+3 y+z & =2 \\
x-5 y & =1 \\
-x+8 y+3 z & =10
\end{aligned}
$$

(e) The system

$$
\begin{aligned}
2 x+y-3 z & =0 \\
5 x+2 y-2 z & =0 \\
4 x+y+5 z & =0
\end{aligned}
$$

3. Consider the IVP:

$$
y^{\prime \prime}-t^{2} \sin \left(t^{3}\right) \cos \left(t^{3}\right) y^{\prime}-\sin \left(t^{3}\right) y=0 \text { with } y(0)=0 \text { and } y^{\prime}(0)=0
$$

Consider the function $f(t)=\sin \left(t^{3}\right)$. Without plugging it into the differential equation, determine why this function could not be a solution to the IVP.

Hint: Find $f(0)$ and $f^{\prime}(0)$, then think about what definitely is a solution to the IVP. Conclude from there.

