MATH 246 Groupwork 2.2

Name:

1. Check that each pair given form a fundamental pair of solutions to the differential equation. Note that you must check both that they're solutions and that they form a fundamental pair!

(a) DE:
$$y'' - 3y' - 10y = 0$$

Pair: $Y_1(t) = e^{-2t}$ and $Y_2(t) = e^{5t}$

(b) DE: $t^2y'' + 4ty' = 0$ Pair: $Y_1(t) = 1$ and $Y_2(t) = t^{-3}$ 2. Solve the following initial value problem and give the interval of existence. Hint: Use the appropriate pair from the previous problem:

$$t^2y'' + 4ty' = 0$$
 with $y(-1) = 3, y'(-1) = 5$

3. What's wrong with the following argument: Given the differential equation $ty'' - t^2y' + 5y = 0$, the Wronskian of the functions $Y_1(t) = t^2$ and $Y_2(t) = t^3$ is

$$W [t^2, t^3] = \begin{vmatrix} t^2 & t^3 \\ 2t & 3t^2 \end{vmatrix} = 3t^4 - 2t^4 = t^4 \not\equiv 0$$

and hence Y_1 and Y_2 form a fundamental pair of solutions to the DE.