MATH 246 Groupwork 2.2

Name:

1. Check that each pair given form a fundamental pair of solutions to the differential equation. Note that you must check both that they're solutions and that they form a fundamental pair!
(a) DE: $y^{\prime \prime}-3 y^{\prime}-10 y=0$

Pair: $Y_{1}(t)=e^{-2 t}$ and $Y_{2}(t)=e^{5 t}$
(b) DE: $t^{2} y^{\prime \prime}+4 t y^{\prime}=0$

Pair: $Y_{1}(t)=1$ and $Y_{2}(t)=t^{-3}$
2. Solve the following initial value problem and give the interval of existence. Hint: Use the appropriate pair from the previous problem:

$$
t^{2} y^{\prime \prime}+4 t y^{\prime}=0 \text { with } y(-1)=3, y^{\prime}(-1)=5
$$

3. What's wrong with the following argument:

Given the differential equation $t y^{\prime \prime}-t^{2} y^{\prime}+5 y=0$, the Wronskian of the functions $Y_{1}(t)=t^{2}$ and $Y_{2}(t)=t^{3}$ is

$$
W\left[t^{2}, t^{3}\right]=\left|\begin{array}{rr}
t^{2} & t^{3} \\
2 t & 3 t^{2}
\end{array}\right|=3 t^{4}-2 t^{4}=t^{4} \not \equiv 0
$$

and hence Y_{1} and Y_{2} form a fundamental pair of solutions to the DE.

