MATH 246 Groupwork 3.9

Name:

\qquad

1. Suppose an autonomous system of differential equations is conservative and has the following stationary points with eigenpairs given.

$$
\begin{aligned}
& (-2,0):\left\{2,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\},\left\{4,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} \\
& (2,0):\left\{-1,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\},\left\{-3,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} \\
& (0,2):\left\{-1,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\},\left\{1,\left[\begin{array}{r}
2 \\
-1
\end{array}\right]\right\}
\end{aligned}
$$

(a) Sketch a feasible phase portrait. Emphasize the solution with initial value $\bar{x}(0)=\left[\begin{array}{r}0.5 \\ 0\end{array}\right]$.
2. Consider the system of differential equations

$$
\begin{aligned}
x^{\prime} & =y \\
y^{\prime} & =-4 x+x^{2}
\end{aligned}
$$

(a) Find the stationary points.
(b) For each stationary point, find the coefficient matrix of the linearization. Find the eigenvalues and if necessary the eigenvectors for each.
(c) Sketch a feasible phase portrait.

