MATH 246 Homework 1.5

Justin Wyss-Gallifent

Directions:

- Work should be done neatly on these sheets!
- Enough work must be shown so that the steps you are taking is clear.

1. Consider the following autonomous differential equation:

$$
y^{\prime}=(y+3)(y-7)^{2}(y-10)
$$

(a) Draw a phase-line portrait for this DE.
(b) Sketch a reasonable family of solutions.
(c) Classify each constant solution as stable, unstable or semistable.
(d) Suppose $y(t)$ were a population in thousands at time t in years. Furthermore suppose at some instant in time $y=10$ and then due to some biological consideration the population fluctuated slightly. Explain what would happen.
2. The differential equation

$$
y^{\prime}=\frac{t}{y^{2}(y-3)}
$$

has solutions given by

$$
y^{4}-4 y^{3}-4 C-2 t^{2}=0
$$

for various C. Plotting a bunch of C values yields:

For (a)-(d) on this graph trace the solutions to the IVP associated with the following initial conditions and label which is which:
(a) $y(0)=1$.
(b) $y(-4)=1$. What does the interval of existence appear to be?
(c) $y(-4)=-1.5$. What do the coordinates of the relative maximum appear to be?
(d) $y(-2)=4$
3. The following graph shows the direction field associated to the differential equation

$$
y^{\prime}=\frac{t}{y(y-3)}
$$

On this graph trace the solutions to the IVP associated with the following initial conditions and label which is which:
(a) $y(0)=2$. What does the interval of existence appear to be?
(b) $y(-4)=4$. What does the interval of existence appear to be?
(c) $y(2)=-1$ What do the coordinates of the relative maximum appear to be?

