MATH 246 Homework 2.2 Justin Wyss-Gallifent

Directions:

- Work should be done neatly and on separate paper.
- Enough work must be shown so that the steps you are taking is clear.
- 1. Check that each pair given form a fundamental pair of solutions to the differential equation. Note that you must check both that they're solutions and that they form a fundamental pair!
 - (a) DE: $t^2y'' 2y = 0$ Pair: $Y_1(t) = t^2$ and $Y_2(t) = \frac{1}{t}$
 - (b) DE: y'' 4y' + 4y = 0Pair: $Y_1(t) = e^{2t}$ and $Y_2(t) = te^{2t}$
 - (c) DE: $t^2y'' + ty' 4y = 0$ Pair: $Y_1(t) = t^2$ and $Y_2(t) = t^{-2}$
 - (d) DE: $t^3D^3y 6t^2D^2y + 15tDy 15y = 0$ Pair: t, t^3, t^5
- 2. Solve the following initial value problems and give the interval of existence for each solution. Hint: Use the fundamental pairs from the previous questions!
 - (a) $t^2y'' 2y = 0$ with y(1) = -1 and y'(1) = -2.
 - (b) y'' 4y' + 4y = 0 with y(0) = 3 and y'(0) = -2.
 - (c) $t^2y'' + ty' 4y = 0$ with y(-1) = 1 and y'(-1) = 6.
 - (d) $t^3D^3y 6t^2D^2y + 15tDy 15y = 0$ with y(2) = 0 and y'(2) = 2 and y''(2) = -1.
- 3. Prove that if Y_1 and Y_2 form a fundamental pair of solutions then so do $Y_1 + Y_2$ and $Y_1 Y_2$.