MATH 246 Homework 2.2
Justin Wyss-Gallifent

Directions:

- Work should be done neatly and on separate paper.
- Enough work must be shown so that the steps you are taking is clear.

1. Check that each pair given form a fundamental pair of solutions to the differential equation. Note that you must check both that they're solutions and that they form a fundamental pair!
(a) DE: $t^{2} y^{\prime \prime}-2 y=0$

Pair: $Y_{1}(t)=t^{2}$ and $Y_{2}(t)=\frac{1}{t}$
(b) DE: $y^{\prime \prime}-4 y^{\prime}+4 y=0$

Pair: $Y_{1}(t)=e^{2 t}$ and $Y_{2}(t)=t e^{2 t}$
(c) DE: $t^{2} y^{\prime \prime}+t y^{\prime}-4 y=0$

Pair: $Y_{1}(t)=t^{2}$ and $Y_{2}(t)=t^{-2}$
(d) DE: $t^{3} D^{3} y-6 t^{2} D^{2} y+15 t D y-15 y=0$

Pair: t, t^{3}, t^{5}
2. Solve the following initial value problems and give the interval of existence for each solution. Hint: Use the fundamental pairs from the previous questions!
(a) $t^{2} y^{\prime \prime}-2 y=0$ with $y(1)=-1$ and $y^{\prime}(1)=-2$.
(b) $y^{\prime \prime}-4 y^{\prime}+4 y=0$ with $y(0)=3$ and $y^{\prime}(0)=-2$.
(c) $t^{2} y^{\prime \prime}+t y^{\prime}-4 y=0$ with $y(-1)=1$ and $y^{\prime}(-1)=6$.
(d) $t^{3} D^{3} y-6 t^{2} D^{2} y+15 t D y-15 y=0$ with $y(2)=0$ and $y^{\prime}(2)=2$ and $y^{\prime \prime}(2)=-1$.
3. Prove that if Y_{1} and Y_{2} form a fundamental pair of solutions then so do $Y_{1}+Y_{2}$ and $Y_{1}-Y_{2}$.

