MATH 246 Homework 2.5 \& 2.6
Justin Wyss-Gallifent

## Directions:

- Work should be done neatly and on separate paper.
- Enough work must be shown so that the steps you are taking is clear.

1. For each of the following first show that $Y_{P}(t)$ is a solution to the differential equation and then find the general solution.
(a) $y^{\prime \prime}-6 y^{\prime}+34 y=33 \cos t+6 \sin t$ with $Y_{P}(t)=\cos t$.
(b) $y^{\prime \prime}-y^{\prime}=1-2 t$ with $Y_{P}(t)=t^{2}+t$.
(c) $y^{\prime \prime}+6 y^{\prime}+9 y=14 \cos t+2 \sin t$ with $Y_{P}(t)=\sin t+\cos t$.
(d) $y^{\prime \prime \prime \prime \prime}-3 y^{\prime \prime \prime \prime}+3 y^{\prime \prime \prime}-y^{\prime \prime}=18-6 t$ with $Y_{P}(t)=t^{3}$.
2. Solve the following initial value problems. A solution to the differential equation is given.
(a) $y^{\prime \prime}-y^{\prime}=1$ with $y(1)=4$ and $y^{\prime}(1)=2$. DE solution $Y_{P}(t)=-t$.
(b) $y^{\prime \prime}+4 y=5 e^{t}$ with $y(0)=2$ and $y^{\prime}(0)=-2$. DE solution $Y_{P}(t)=e^{t}$.
3. Using the Method of Undetermined Coefficients, write down the undetermined $Y_{P}(t)$ for each of the following.
(a) $y^{\prime \prime}-4 y^{\prime}+3 y=t^{3}$
(b) $y^{\prime \prime}-4 y^{\prime}=t^{3}+2 t$
(c) $y^{\prime \prime}-4 y^{\prime}+3 y=e^{2 t}$
(d) $y^{\prime \prime}+4 y=e^{t} \cos (3 t)$
(e) $y^{\prime \prime}+4 y=42 e^{t}+\left(t^{2}-t\right) \cos (2 t)$
(f) $y^{\prime \prime}-4 y^{\prime}+3 y=2+e^{t}$
