MATH 246 Homework 3.10
Justin Wyss-Gallifent

Directions:

- Work should be done neatly and on separate paper.
- Enough work must be shown so that the steps you are taking is clear.

1. A competing species model is given by the following. Assume quantities are in thousands.

$$
\begin{aligned}
x^{\prime} & =(36-2 x-3 y) x \\
y^{\prime} & =(24-2 x-y) y
\end{aligned}
$$

(a) Find the stationary solutions and analyze the behavior around each.
(b) Draw a reasonable family of solutions.
(c) Describe (full sentences!) the various possible outcomes for a starting scenario where both populations are small.
(d) If the populations are at the stationary solution in the first quadrant, why does it seem real-world reasonable that there are essentially two directions of instability? What do they correspond to?
2. A cooperating species model is given by the following. Assume quantities are in thousands.

$$
\begin{aligned}
x^{\prime} & =(27-3 x+y) x \\
y^{\prime} & =(27+3 x-2 y) y
\end{aligned}
$$

(a) Find the stationary solutions and analyze the behavior around each.
(b) Draw a reasonable family of solutions.
(c) Why does it seem real-world reasonable that a population such as $(1,100)$ would undergo a massive decrease in y but with very little change in x before stabilizing?

