MATH 246 Homework 3.5
Justin Wyss-Gallifent

Directions:

- Work should be done neatly and on separate paper.
- Enough work must be shown so that the steps you are taking is clear.

1. Consider the system:

$$
\bar{x}^{\prime}=\left[\begin{array}{rr}
2 & 3 \\
-1 & -2
\end{array}\right] \bar{x}
$$

A fundamental matrix for this system is:

$$
\Psi=\left[\begin{array}{rr}
-3 e^{t} & -e^{-t} \\
e^{t} & e^{-t}
\end{array}\right]
$$

(a) Find the natural fundamental matrix Φ associated to $t_{I}=\ln (2)$.
(b) Use your answer to (a) to find the solutions to the two IVPs:

$$
\bar{x}(\ln 2)=\left[\begin{array}{r}
2 \\
-3
\end{array}\right] \text { and } \bar{x}(\ln 2)=\left[\begin{array}{r}
0 \\
42
\end{array}\right]
$$

2. Consider the second order linear differential equation $D^{2} y-3 D y=0$.
(a) Find a fundamental pair using Chapter 2 methods.
(b) Rewrite this differential equation as a system of two first-order differential equations using $x_{1}=y$ and $x_{2}=y^{\prime}$.
(c) Using this rewrite, the fundamental pair from (a) will then give you a fundamental pair for the system. Write down this fundamental pair.
(d) Find the natural fundamental matrix Φ associated to $t_{I}=0$.
(e) Use your answer to (c) to find the solution to the IVP with:

$$
\bar{x}(0)=\left[\begin{array}{l}
17 \\
42
\end{array}\right]
$$

3. Find the general solution to each of the following. Then for those with an initial value, find the specific solution.
(a) $\bar{x}^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right] \bar{x}$
(b) $\bar{x}^{\prime}=\left[\begin{array}{rr}3 & -2 \\ -1 & 4\end{array}\right] \bar{x}$
(c) $\bar{x}^{\prime}=\left[\begin{array}{rr}3 & -2 \\ 1 & 4\end{array}\right] \bar{x} \quad$ with $\bar{x}(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(d) $\bar{x}^{\prime}=\left[\begin{array}{ll}0 & 1 \\ 2 & 2\end{array}\right] \bar{x}$
(e) $\bar{x}^{\prime}=\left[\begin{array}{ll}3 & 0 \\ 4 & 3\end{array}\right] \bar{x}$
(f) $\bar{x}^{\prime}=\left[\begin{array}{rr}5 & 4 \\ -25 & -15\end{array}\right] \bar{x} \quad$ with $\bar{x}(0)=\left[\begin{array}{l}2 \\ 0\end{array}\right]$
(g) $\bar{x}^{\prime}=\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right] \bar{x}$
