MATH 246 Homework 3.5 Justin Wyss-Gallifent

Directions:

- Work should be done neatly and on separate paper.
- Enough work must be shown so that the steps you are taking is clear.
- 1. Consider the system:

$$\bar{x}' = \left[\begin{array}{cc} 2 & 3\\ -1 & -2 \end{array} \right] \bar{x}$$

A fundamental matrix for this system is:

$$\Psi = \left[\begin{array}{cc} -3e^t & -e^{-t} \\ e^t & e^{-t} \end{array} \right]$$

- (a) Find the natural fundamental matrix Φ associated to $t_I = \ln(2)$.
- (b) Use your answer to (a) to find the solutions to the two IVPs:

$$\bar{x}(\ln 2) = \begin{bmatrix} 2\\ -3 \end{bmatrix}$$
 and $\bar{x}(\ln 2) = \begin{bmatrix} 0\\ 42 \end{bmatrix}$

- 2. Consider the second order linear differential equation $D^2y 3Dy = 0$.
 - (a) Find a fundamental pair using Chapter 2 methods.
 - (b) Rewrite this differential equation as a system of two first-order differential equations using $x_1 = y$ and $x_2 = y'$.
 - (c) Using this rewrite, the fundamental pair from (a) will then give you a fundamental pair for the system. Write down this fundamental pair.
 - (d) Find the natural fundamental matrix Φ associated to $t_I = 0$.
 - (e) Use your answer to (c) to find the solution to the IVP with:

$$\bar{x}(0) = \left[\begin{array}{c} 17\\42 \end{array} \right]$$

3. Find the general solution to each of the following. Then for those with an initial value, find the specific solution.

(a)
$$\bar{x}' = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \bar{x}$$

(b) $\bar{x}' = \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix} \bar{x}$
(c) $\bar{x}' = \begin{bmatrix} 3 & -2 \\ 1 & 4 \end{bmatrix} \bar{x}$ with $\bar{x}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
(d) $\bar{x}' = \begin{bmatrix} 0 & 1 \\ 2 & 2 \end{bmatrix} \bar{x}$
(e) $\bar{x}' = \begin{bmatrix} 3 & 0 \\ 4 & 3 \end{bmatrix} \bar{x}$
(f) $\bar{x}' = \begin{bmatrix} 5 & 4 \\ -25 & -15 \end{bmatrix} \bar{x}$ with $\bar{x}(0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$
(g) $\bar{x}' = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \bar{x}$