MATH 246 Homework 3.9
Justin Wyss-Gallifent

Directions:

- Work should be done neatly and on separate paper.
- Enough work must be shown so that the steps you are taking is clear.

1. Suppose an autonomous system of differential equations is conservative and has the following stationary points with eigenpairs given.

$$
\begin{aligned}
& (0,0):\{-1 \pm 2 i, ?\} \\
& (2,0):\left\{-2,\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\},\left\{3,\left[\begin{array}{r}
1 \\
-3
\end{array}\right]\right\} \\
& (4,0):\{ \pm i, ?\}
\end{aligned}
$$

(a) Sketch a feasible phase portrait.
(b) Separately sketch the solution satisfying $\bar{x}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
2. Consider the system of differential equations

$$
\begin{aligned}
x^{\prime} & =x+y \\
y^{\prime} & =x^{2}-y
\end{aligned}
$$

(a) Find the stationary points.
(b) For each stationary point, find the coefficient matrix of the linearization. Find the eigenvalues and if necessary the eigenvectors for each.
(c) Sketch a feasible phase portrait.
(d) On a separate axes, sketch the solution to the initial value problem with $\bar{x}(0)=\left[\begin{array}{r}-1 \\ 0\end{array}\right]$.
3. Consider the system of differential equations

$$
\begin{aligned}
x^{\prime} & =x y-y \\
y^{\prime} & =-\frac{1}{2} y^{2}+2 x
\end{aligned}
$$

(a) Find the stationary points.
(b) For each stationary point, find the coefficient matrix of the linearization. Find the eigenvalues and if necessary the eigenvectors for each.
(c) Sketch a feasible phase portrait.
(d) On a separate axes, sketch the solution to the initial value problem with $\bar{x}(0)=\left[\begin{array}{l}0 \\ 2\end{array}\right]$.

