MATH 246: Chapter 1 Section 2: Linear First-Order DEs Justin Wyss-Gallifent
Main Topics:

- Linear First-Order DEs and Linear Normal Form.
- General approach.
- Initial Value Problems.
- Theory

1. Linear first-order ODEs.

Recall that these will all have the form $a_{1}(t) y^{\prime}+a_{0}(t) y=c(t)$ where a_{1}, a_{0}, c can be any functions of t.
Example: $4 y^{\prime}+5 y=0$
Example: $4 t y^{\prime}+e^{t} y=\sin t$
2. Linear Normal Form.
(a) Introduction:

We will usually divide through by $a_{1}(t)$ and re-label a bit to get what is known as the linear normal form:

$$
y^{\prime}+a(t) y=f(t) \text { for functions } a(t) \text { and } f(t)
$$

(b) General Solution.

These we can actually handle, and most of you did in Calculus II though it may be rusty.
Method: If we let $A(t)$ be an antiderivative (any antiderivative, meaning use +0 for the constant) of $a(t)$ so that $A^{\prime}(t)=a(t)$ then observe:

$$
\begin{aligned}
y^{\prime}+a(t) y & =f(t) \\
e^{A(t)} y^{\prime}+e^{A(t)} a(t) y & =f(t) e^{A(t)} \\
\frac{d}{d t}\left(e^{A(t)} y\right) & =f(t) e^{A(t)} \\
e^{A(t)} y & =\int f(t) e^{A(t)} d t \\
y & =e^{-A(t)} \int f(t) e^{A(t)} d t
\end{aligned}
$$

The only step that might concern you here is from line 2 to line 3 . This is just the reverse of the product rule with a bit of chain rule thrown in. Reading it from line 3 to line 2 might be easier. We'll see this sort of thing happen again with exact DEs later.
This process can either be repeated for each problem or treated simply as a recipe, meaning find $A(t)$ and then use the formula at the end of the calculation.
Be careful though, the $e^{-A(t)}$ is multiplied by the entire integral, meaning the $+C$ too when you integrate.
We'll call this final expression the integral-form solution:

$$
y=e^{-A(t)} \int f(t) e^{A(t)} d t
$$

Example: Consider $y^{\prime}+5 y=2$. We see that $a(t)=5$ so $A(t)=5 t$ and the solution is

$$
\begin{aligned}
y & =e^{-5 t} \int 2 e^{5 t} d t \\
& =e^{-5 t}\left(\frac{2}{5} e^{5 t}+C\right) \leftarrow \text { Note the parentheses!!! } \\
& =\frac{2}{5}+C e^{-5 t}
\end{aligned}
$$

If you'd have forgotten the parentheses you'd have got an incorrect answer which I won't even write here!
Example: Consider $t y^{\prime}+2 y=t^{4}$ with $t>0$. This is not in linear normal form so we divide by t to get $y^{\prime}+\frac{2}{t} y=t^{3}$. Then $a(t)=\frac{2}{t}$ so $A(t)=2 \ln t$ and the solution is

$$
\begin{aligned}
y & =e^{-2 \ln t} \int t^{3} e^{2 \ln t} d t \\
y & =e^{-2 \ln t} \int t^{3} e^{2 \ln t} d t \\
& =t^{-2} \int t^{5} d t \\
& =t^{-2}\left(\frac{1}{6} t^{6}+C\right) \\
& =\frac{1}{6} t^{4}+\frac{C}{t^{2}}
\end{aligned}
$$

Here's one with an IVP:
Example: Consider $y^{\prime}-6 y=e^{t}$ with $y(0)=2$. We see that $a(t)=-6$ so $A(t)=-6 t$ and the general solution is

$$
\begin{aligned}
y & =e^{-(-6 t)} \int e^{t} e^{-6 t} d t \\
& =e^{6 t} \int e^{-5 t} d t \\
& =e^{6 t}\left(-\frac{1}{5} e^{-5 t}+C\right) \\
& =-\frac{1}{5} e^{t}+C e^{6 t}
\end{aligned}
$$

At this point $y(0)=-\frac{1}{5} e^{0}+C e^{0}=-\frac{1}{5}+C=2$ so that $C=\frac{11}{5}$ so the specific solution is

$$
y=-\frac{1}{5} e^{t}+\frac{11}{5} e^{6 t}
$$

At this point you can probably see that solving a first-order linear ODE is as easy (or as hard) as first finding $A(t)$ and then finding $\int f(t) e^{A(t)} d t$.
(c) Note about the choice of $A(t)$. You might wonder what happened if you didn't choose +0 as your constant when choosing $A(t)$. In fact it makes no difference. Suppose we took $A(t)$ and adjusted it by adding some number like +7 . The solution would then be:

$$
y=e^{-(A(t)+7)} \int f(t) e^{A(t)+7} d t=e^{-7} e^{-A(t)} \int f(t) e^{7} e^{A(t)} d t=e^{-A(t)} \int f(t) e^{A(t)} d t
$$

which is exactly the same.
3. Theory!

The Second Fundamental Theorem of Calculus states that if a function is continuous on an open interval then it has an antiderivative on that interval and that antiderivative will be continuous. What this means is that if $a(t)$ is continuous then $A(t)$ will exist and therefore so will $e^{-A(t)}$ and then provided that $f(t)$ is continuous then so will $\int f(t) e^{A(t)} d t$.
Warning! This doesn't mean that these things are easy to calculate, just that they exist!
What this means is that if we have an initial value $y\left(t_{I}\right)=y_{I}$ then the interval of existence of the solution will be the largest open interval containing t_{I} on which both $f(t)$ and $a(t)$ are continouous. As before this lets us find the IE even when we can't solve the IVP.
Example: Consider $y^{\prime}+\frac{1}{t^{2}} y=\frac{1}{t-5}$ with $y(2)=17$. Here $a(t)=\frac{1}{t^{2}}$ and $f(t)=\frac{1}{t-5}$. The largest open interval containing $t_{I}=2$ on which both are continuous is $(0,5)$ so this is the IE of the solution. Finding the solution is a different matter entirely but it exists on $(0,5)$!
4. Integration Comment.

As a final note observe that there are two antiderivatives involved in the problem, finding $A(t)$ and finding $\int f(t) e^{A(t)} d t$. This latter one will often involve simplification involving e and \ln as well as substitution and integration by parts.

