MATH 246: Chapter 1 Section 7: Approximation Methods Justin Wyss-Gallifent
Main Topics:

- Euler's Method (The Left-Sum Method).
- The Runge-Trapezoid Method.
- The Runge-Midpoint Method.

1. Euler's Method
(a) Introduction Suppose we're dealing with the IVP given by:

$$
\frac{d y}{d t}=t+y \text { with } y(1)=2
$$

Suppose we'd really like to know $y(2)$.
The DE tells us that at the point $(1,2)$ the slope of the solution is $\frac{d y}{d t}(1,2)=3$. Of course the solution is not a straight line, meaning if we move right 1 we won't go up exactly 3 , but if things aren't too bad then we would go up approximately 3 . Thus we can conclude that $y(1+1) \approx 2+3$ or $y(2) \approx 5$.
This approximately probably stinks, so what we can do instead is go to the right just 0.5 and up $0.5(3)$, then do the process again, now anchored at the new point. That is:
At $(1,2)$ the slope is $\frac{d y}{d t}(1,2)=3$ so we go over 0.5 and up $0.5(3)$ and now we're at $(1+$ $0.5,2+0.5(3))=(1.5,3.5)$.
At $(1.5,3.5)$ the slope is $\frac{d y}{d t}(1.5,3.5)=5$ so we go over 0.5 and up $0.5(5)$ and now we're at $(1.5+0.5,3.5+0.5(5))=(2,6)$
Then we conclude $y(2) \approx 6$. This approximation is probably better.
(b) Euler's Method.

This process is known as Euler's Method. We start with an IVP given by $\frac{d y}{d t}=f(t, y)$ with $y\left(t_{0}\right)=y_{0}$. and we choose a small h. We did $h=1$ and then $h=0.5$. We then proceed as follows:

$$
\begin{aligned}
& \left(t_{1}, y_{1}\right)=\left(t_{0}+h, y_{0}+h f\left(t_{0}, y_{0}\right)\right) \\
& \left(t_{2}, y_{2}\right)=\left(t_{1}+h, y_{1}+h f\left(t_{1}, y_{1}\right)\right)
\end{aligned}
$$

Or, more generally:
Euler's Method
$t_{i}=t_{i-1}+h$
$y_{i} \approx y_{i-1}+h f\left(t_{i-1}, y_{i-1}\right)$

Example: Again with $\frac{d y}{d t}=t+y$ with $y(1)=2$. Let's approximate $y(2)$ using $n=10$ steps of size $h=0.1$.
This can all be put more nicely into a table as follows:

0	1	2	$\mathrm{y}(1)=2$
i	t_{i}	$y_{i} \approx y_{i-1}+h f\left(t_{i-1}, y_{i-1}\right)$	So
1	$1+0.1=1.1$	$2+0.3=2.3$	$y(1.1) \approx 2.3$
2	$1.1+0.1=1.2$	$2.3+0.34=2.64$	$y(1.2) \approx 2.64$
3	$1.2+0.1=1.3$	$2.64+0.384=3.024$	$y(1.3) \approx 3.024$
4	$1.3+0.1=1.4$	$3.024+0.4324=3.4564$	$y(1.4) \approx 3.4564$
5	$1.4+0.1=1.5$	$3.4564+0.48564=3.94204$	$y(1.5) \approx 3.94204$
6	$1.5+0.1=1.6$	$3.94204+0.544204=4.48624$	$y(1.6) \approx 4.48624$
7	$1.6+0.1=1.7$	$4.48624+0.608624=5.09487$	$y(1.7) \approx 5.09487$
8	$1.7+0.1=1.8$	$5.09487+0.679487=5.77436$	$y(1.8) \approx 5.77436$
9	$1.8+0.1=1.9$	$5.77436+0.757436=6.53179$	$y(1.9) \approx 6.53179$
10	$1.9+0.1=2$	$6.53179+0.843179=7.37497$	$y(2) \approx 7.37497$

Of course the further we go the less accurate we get but if the DE is not so bad then maybe we're good. The solution to the above DE (first-order linear) is $y(t)=4 e^{t-1}-t-1$ and so $y(2)=4 e-2-1 \approx 7.8731273138361809414411498854106$ so our approximation is not terrible.
Example: Same IVP but we could to better by reducing h and increasing the number of steps. Just for fun, compare to 1000 steps of size $h=0.001$ each and see how close the approximation is at the end!
Note: This was generated in Python and some approximation and truncation is taking place.

0	1	2	$\mathrm{y}(1)=2$
i	t_{i}	$y_{i} \approx y_{i-1}+h f\left(t_{i-1}, y_{i-1}\right)$	So
1	$1+0.001=1.001$	$2+0.003=2.003$	$y(1.001) \approx 2.003$
2	$1.001+0.001=1.002$	$2.003+0.003004=2.006$	$y(1.002) \approx 2.006$
3	$1.002+0.001=1.003$	$2.006+0.003008=2.00901$	$y(1.003) \approx 2.00901$
\ldots	\ldots	\ldots	\cdots
998	$1.997+0.001=1.998$	$7.83816+0.00983516=7.84799$	$y(1.998) \approx 7.84799$
999	$1.998+0.001=1.999$	$7.84799+0.00984599=7.85784$	$y(1.999) \approx 7.85784$
1000	$1.999+0.001=2$	$7.85784+0.00985684=7.8677$	$y(2) \approx 7.8677$

2. Improving:

First off recall that for a continuous function $y(t)$ the Fundamental Theorem of Calculus tells us that:

$$
\int_{a}^{b}\left[\frac{d y}{d t}\right] d t=y(b)-y(a)
$$

With our differential equation given that we're looking for some $y(t)$ satisfying $\frac{d y}{d t}=f(t, y(t))$ this translates to:

$$
\int_{a}^{b} f(t, y(t)) d t=y(b)-y(a)
$$

Given that we started this whole process knowing y_{0} and wanting y_{1} we can write:

$$
y\left(t_{1}\right)-y\left(t_{0}\right)=\int_{t_{0}}^{t_{1}} f(t, y(t)) d t
$$

which can then be rewritten as our Basic Formula:

$$
y_{1}=y_{0}+\int_{t_{0}}^{t_{1}} f(t, y(t)) d t
$$

So the real question is how to tackle the integral.
Let's revisit integrals. Suppose you wanted to know $\int_{a}^{b} g(x) d x$ but couldn't do it. One really bad approximation is just a left rectangle. That is

$$
\int_{a}^{b} g(x) d x \approx(b-a) g(a)
$$

Using this in the Basic Formula yields:

$$
\begin{aligned}
& y_{1}=y_{0}+\int_{t_{0}}^{t_{1}} f(t, y(t)) d t \\
& y_{1} \approx y_{0}+\left(t_{1}-t_{0}\right) f\left(t_{0}, y\left(t_{0}\right)\right) \\
& y_{1} \approx y_{0}+\left(t_{1}-t_{0}\right) f\left(t_{0}, y_{0}\right) \\
& y_{1} \approx y_{0}+h f\left(t_{0}, y_{0}\right)
\end{aligned}
$$

Well then, we've just got Euler's Method!
What this suggests is that better methods of approximating the integral yield better approximations for our IVP.
3. The Runge-Trapezoid Method:

A second way to approximate the integal would be to construct a trapezoid using the endpoints:

$$
\int_{a}^{b} g(x) d x \approx \frac{1}{2}(b-a)(g(a)+g(b))
$$

Using this in the Basic Formula yields:

$$
\begin{aligned}
y_{1} & =y_{0}+\int_{t_{0}}^{t_{1}} f(t, y(t)) d t \\
y_{1} & \approx y_{0}+\frac{1}{2}\left(t_{1}-t_{0}\right)\left(f\left(t_{0}, y\left(t_{0}\right)\right)+f\left(t_{1}, y\left(t_{1}\right)\right)\right) \\
y_{1} & \approx y_{0}+\frac{1}{2} h\left(f\left(t_{0}, y_{0}\right)+f\left(t_{0}+h, y\left(t_{1}\right)\right)\right)
\end{aligned}
$$

Which is all fun and games until we notice the right side has an $y\left(t_{1}\right)$ in it, and this is what we want. How can we resolve this? We do something slick and we plug in the result of Euler's Method into this:

$$
y_{1} \approx y_{0}+\frac{1}{2} h(f\left(t_{0}, y_{0}\right)+f(t_{0}+h, \underbrace{y_{0}+h f\left(t_{0}, y_{0}\right)}_{\text {Euler: }}))
$$

Haha what fun. What we're really doing is using one approximation of $y\left(t_{1}\right)$ to get what we think will be a better one.

Runge-Trapezoidal Method

$$
t_{i}=t_{i-1}+h
$$

$$
y_{i} \approx y_{i-1}+\frac{1}{2} h\left(f\left(t_{i-1}, y_{i-1}\right)+f\left(t_{i-1}+h, y_{i-1}+h f\left(t_{i-1}, y_{i-1}\right)\right)\right)
$$

Back to our first IVP $\frac{d y}{d t}=t+y$ with $y(1)=2$. If $h=0.1$ then proceeding one step gives us $t_{1}=0.1$ and:

$$
\begin{aligned}
y_{1} & \approx y_{0}+\frac{1}{2} h\left(f\left(t_{0}, y_{0}\right)+f\left(t_{0}+h, y_{0}+h f\left(t_{0}, y_{0}\right)\right)\right) \\
& \approx 2+\frac{1}{2}(0.1)(f(1,2)+f(1+0.1,2+0.1 f(1,2))) \\
& \approx 2+\frac{1}{2}(0.1)(1+2+f(1.1,2+0.1(1+2))) \\
& \left.\approx 2+\frac{1}{2}(0.1)(1+2+1.1+2+0.1(1+2))\right)=2.32
\end{aligned}
$$

Here's the Runge-Trapezoidal Method applied to our first IVP with 10 steps of size 0.1 :

0	1	2	$\mathrm{y}(1)=2$
i	t_{i}	y_{i}	So
1	$1+0.1=1.1$	2.32	$y(1.1) \approx 2.32$
2	$1.1+0.1=1.2$	2.6841	$y(1.2) \approx 2.6841$
3	$1.2+0.1=1.3$	3.09693	$y(1.3) \approx 3.09693$
4	$1.3+0.1=1.4$	3.56361	$y(1.4) \approx 3.56361$
5	$1.4+0.1=1.5$	4.08979	$y(1.5) \approx 4.08979$
6	$1.5+0.1=1.6$	4.68171	$y(1.6) \approx 4.68171$
7	$1.6+0.1=1.7$	5.34629	$y(1.7) \approx 5.34629$
8	$1.7+0.1=1.8$	6.09116	$y(1.8) \approx 6.09116$
9	$1.8+0.1=1.9$	6.92473	$y(1.9) \approx 6.92473$
10	$1.9+0.1=2$	7.85632	$y(2) \approx 7.85632$

Remember the exact value of $y(2)=4 e-2-1 \approx 7.8731273138361809414411498854106$.
4. The Runge-Midpoint Method:

A third way to approximate the integral is a midpoint rectangle:

$$
\int_{a}^{b} g(x) d x \approx(b-a) g\left(\frac{a+b}{2}\right)
$$

Using this in the Basic Formula and using the fact that our midpoint is $t_{0}+\frac{1}{2} h$ yields:

$$
\begin{aligned}
& y_{1}=y_{0}+\int_{t_{0}}^{t_{1}} f(t, y(t)) d t \\
& y_{1} \approx y_{0}+\left(t_{1}-t_{0}\right) f\left(t_{0}+\frac{1}{2} h, y\left(t_{0}+\frac{1}{2} h\right)\right) \\
& y_{1} \approx y_{0}+h f\left(t_{0}+\frac{1}{2} h, y\left(t_{0}+\frac{1}{2} h\right)\right)
\end{aligned}
$$

Which again is all fun and games until we realize we don't know $y\left(t_{0}+\frac{1}{2} h\right)$ so we swap in Euler's Method again using a half-step, that is $y_{0}+\frac{1}{2} h f\left(t_{0}, y_{0}\right)$ and so

$$
y_{1} \approx y_{0}+h f(t_{0}+\frac{1}{2} h, \underbrace{y_{0}+\frac{1}{2} h f\left(t_{0}, y_{0}\right)}_{\text {Euler }})
$$

Runge-Midpoint Method

$$
\begin{aligned}
t_{i} & =t_{i-1}+h \\
y_{i} & \approx y_{i-1}+h f\left(t_{i-1}+\frac{1}{2} h, y_{i-1}+\frac{1}{2} h f\left(t_{i-1}, y_{i-1}\right)\right)
\end{aligned}
$$

Back to our first IVP $\frac{d y}{d t}=t+y$ with $y(1)=2$. If $h=0.1$ then proceeding one step gives us $t_{1}=0.1$ and:

$$
\begin{aligned}
y_{i} & \approx y_{0}+h f\left(t_{0}+\frac{1}{2} h, y_{0}+\frac{1}{2} h f\left(t_{0}, y_{0}\right)\right) \\
& \approx 2+0.1 f\left(1+\frac{1}{2}(0.1), 2+\frac{1}{2}(0.1) f(1,2)\right) \\
& \approx 2+0.1 f\left(1+\frac{1}{2}(0.1), 2+\frac{1}{2}(0.1)(1+2)\right) \\
& \approx 2+0.1\left(1+\frac{1}{2}(0.1)+2+\frac{1}{2}(0.1)(1+2)\right)=2.32
\end{aligned}
$$

This is actually the same as the Runge-Trapezoidal Method and in fact for this particular IVP the Runge-Midpoint Method applied to our first IVP actually gives the same result as the RungeTrapezoidal Method, so we omit the full table.
5. Everything together:

Let $y(t)$ be the solution to $\frac{d y}{d t}=t y+t$ with $y(0)=1$. Approximate $y(1)$ using $n=10$ steps of size $h=0.1$:

	Euler		
0	0	1	$\mathrm{y}(0)=1$
i	t_{i}	$y_{i} \approx y_{i-1}+h f\left(t_{i-1}, y_{i-1}\right)$	So
1	$0+0.1=0.1$	$1+0=1$	$y(0.1) \approx 1$
2	$0.1+0.1=0.2$	$1+0.02=1.02$	$y(0.2) \approx 1.02$
3	$0.2+0.1=0.3$	$1.02+0.0404=1.0604$	$y(0.3) \approx 1.0604$
4	$0.3+0.1=0.4$	$1.0604+0.061812=1.12221$	$y(0.4) \approx 1.12221$
5	$0.4+0.1=0.5$	$1.12221+0.0848885=1.2071$	$y(0.5) \approx 1.2071$
6	$0.5+0.1=0.6$	$1.2071+0.110355=1.31746$	$y(0.6) \approx 1.31746$
7	$0.6+0.1=0.7$	$1.31746+0.139047=1.4565$	$y(0.7) \approx 1.4565$
8	$0.7+0.1=0.8$	$1.4565+0.171955=1.62846$	$y(0.8) \approx 1.62846$
9	$0.8+0.1=0.9$	$1.62846+0.210277=1.83873$	$y(0.9) \approx 1.83873$
10	$0.9+0.1=1$	$1.83873+0.255486=2.09422$	$y(1) \approx 2.09422$

Runge-Trapezoidal			
0	0	1	$\mathrm{y}(0)=1$
i	t_{i}	y_{i}	So
1	$0+0.1=0.1$	1.01	$y(0.1) \approx 1.01$
2	$0.1+0.1=0.2$	1.04035	$y(0.2) \approx 1.04035$
3	$0.2+0.1=0.3$	1.09197	$y(0.3) \approx 1.09197$
4	$0.3+0.1=0.4$	1.16645	$y(0.4) \approx 1.16645$
5	$0.4+0.1=0.5$	1.2661	$y(0.5) \approx 1.2661$
6	$0.5+0.1=0.6$	1.39414	$y(0.6) \approx 1.39414$
7	$0.6+0.1=0.7$	1.55478	$y(0.7) \approx 1.55478$
8	$0.7+0.1=0.8$	1.75355	$y(0.8) \approx 1.75355$
9	$0.8+0.1=0.9$	1.99751	$y(0.9) \approx 1.99751$
10	$0.9+0.1=1$	2.29576	$y(1) \approx 2.29576$

Runge-Midpoint			
0	0	1	$\mathrm{y}(0)=1$
i	t_{i}	y_{i}	So
1	$0+0.1=0.1$	1.01	$y(0.1) \approx 1.01$
2	$0.1+0.1=0.2$	1.0403	$y(0.2) \approx 1.0403$
3	$0.2+0.1=0.3$	1.09182	$y(0.3) \approx 1.09182$
4	$0.3+0.1=0.4$	1.16613	$y(0.4) \approx 1.16613$
5	$0.4+0.1=0.5$	1.26556	$y(0.5) \approx 1.26556$
6	$0.5+0.1=0.6$	1.39328	$y(0.6) \approx 1.39328$
7	$0.6+0.1=0.7$	1.55351	$y(0.7) \approx 1.55351$
8	$0.7+0.1=0.8$	1.75172	$y(0.8) \approx 1.75172$
9	$0.8+0.1=0.9$	1.99497	$y(0.9) \approx 1.99497$
10	$0.9+0.1=1$	2.2923	$y(1) \approx 2.2923$

For reference the actual answer is $2 e^{0.5}-1 \approx 2.2974425414002562936973015756283$.

