MATH 246: Chapter 1 Section 8: Exact Differential Equations Justin Wyss-Gallifent
Main Topics:

- Exact Differential Equations.
- Method of Solution.
- Integrating Factors.

1. A Bit of History and Introduction: Suppose $H(x, y)$ is a function and y is a function of x. Then by the chain rule we know $\frac{d}{d x} H(x, y)=H_{x}(x, y)+H_{y}(x, y) \frac{d y}{d x}$.
So now consider the following differential equation:

$$
3 x^{2} y^{2}+2 x^{3} y \frac{d y}{d x}=0
$$

You may notice that the left side looks like the result of the chain rule and is actually so, when $H(x, y)=x^{3} y^{2}$. Don't worry about if there's a formal method for where $H(x, y)$ comes from for now, just notice that $H_{x}(x, y)=3 x^{2} y^{2}$ and $H_{y}(x, y)=2 x^{3} y$. What this means is that the differential equation may be rewritten by undoing the chain rule on the left:

$$
\underbrace{3 x^{2} y^{2}+2 x^{3} y \frac{d y}{d x}}_{\frac{d}{d x}\left[x^{3} y^{2}\right]}=0
$$

So then when the derivative of something is zero, that thing is a constant:

$$
\begin{aligned}
\frac{d}{d x}\left[x^{3} y^{2}\right] & =0 \\
x^{3} y^{2} & =C
\end{aligned}
$$

and we've solved it, at least implicitly!
2. Definition and Method: A differential equation is exact if it has the form:

$$
H_{x}(x, y)+H_{y}(x, y) \frac{d y}{d x}=0
$$

for some function $H(x, y)$. When a differential equation is exact, solving implicitly is as easy as finding $H(x, y)$ and setting $H(x, y)=C$ for any constant.
Here are a few exact differential equations. For each, $H(x, y)$ is written in the middle and the implicit solution to the right.

Exact DE	$H(x, y)$	Solution to DE
$y+x \frac{d y}{d x}=0$	$H(x, y)=x y$	$x y=C$
$y+(x+2 y) \frac{d y}{d x}=0$	$H(x, y)=x y+y^{2}$	$x y+y^{2}=C$
$\frac{1}{y}-\frac{x}{y^{2}} \frac{d y}{d x}=0$	$H(x, y)=\frac{x}{y}$	$\frac{x}{y}=C$
$y \cos (x y)+x \cos (x y) \frac{d y}{d x}=0$	$H(x, y)=\sin (x y)$	$\sin (x y)=C$

3. Detecting Exactness and Finding H: There is a trick to detecting whether a differential equation is exact. If the differential equation has the form:

$$
M+N \frac{d y}{d x}=0
$$

then it is exact if and only if $M_{y}=N_{x}$. You can test all the ones above. Then you can check that this next one is not exact:

$$
x y+y \frac{d y}{d x}=0
$$

In this case $M_{y}=x$ and $N_{x}=0$. Not equal, not exact.
Once you know that your differential equation is exact, often you can guess at $H(x, y)$. However if you're struggling, there's a systematic method for finding it. Here's an example from above:

$$
y+(x+2 y) \frac{d y}{d x}=0
$$

We want $H(x, y)$ with (A) $H_{x}(x, y)=y$ and (B) $H_{y}(x, y)=x+2 y$. Observe:

We want (A):	$H_{x}(x, y)=y$
This tells us that:	$H(x, y)=x y+h(y)$
From this line:	$H_{y}(x, y)=x+h^{\prime}(y)$
But from (B):	$H_{y}(x, y)=x+2 y$
Set these equal:	$x+h^{\prime}(y)=x+2 y$
Solve for $h^{\prime}(y):$	$h^{\prime}(y)=2 y$
Find $h(y):$	$h(y)=y^{2}+D$
Put back into second line:	$H(x, y)=x y+y^{2}+D$

We can choose any D so choose $D=0$ to get $H(x, y)=x y+y^{2}$.
Example: Find $H(x, y)$ to solve $x+1+\frac{1}{y}-\frac{x}{y^{2}} \frac{d y}{d x}=0$. Follow the exact procedure above, here we want (A) $H_{x}(x, y)=x+1+\frac{1}{y}$ and (B) $H_{y}(x, y)=-\frac{x}{y^{2}}$:
We want (A):
$H_{x}(x, y)=x+1+\frac{1}{y}$
This tells us that:
$H(x, y)=\frac{1}{2} x^{2}+x+\frac{x}{y}+h(y)$
From this line:
But from (B):
Set these equal:
$H_{y}(x, y)=-\frac{x}{y^{2}}+h^{\prime}(y)$
Solve for $h^{\prime}(y)$:
$H_{y}(x, y)=-\frac{x}{y^{2}}$
$-\frac{x}{y^{2}}+h^{\prime}(y)=-\frac{x}{y^{2}}$
Find $h(y)$:
$h^{\prime}(y)=0$
Put back into second line:
$h(y)=D$
$H(x, y)=\frac{1}{2} x^{2}+x+\frac{x}{y}+D$

Then choose $D=0$ to get $H(x, y)=\frac{1}{2} x^{2}+x+\frac{x}{y}$ and the solution to our DE is $\frac{1}{2} x^{2}+x+\frac{x}{y}=C$.
4. Integrating Factors: It's not uncommon to have a differential equation which is not quite exact but can be made exact by multiplying through by some function called an integrating factor. For example the differential equation

$$
2 y+x \frac{d y}{d x}=0
$$

is not exact because $M_{y}=2$ and $N_{x}=1$ so $M_{y} \neq N_{x}$. But if we multiply through by x we get the new differential equation

$$
2 x y+x^{2} \frac{d y}{d x}=0
$$

which is exact because $M_{y}=2 x$ and $N_{x}=2 x$. Now $H(x, y)=x^{2} y$ and the solution is $x^{2} y=C$. The question is how to come up with this integating factor. This is very challenging so we'll look at two specific cases, either the integrating factor is a function $f(x)$ of only x or the integrating factor is a function $g(y)$ of only y.

5. Examples:

Example 1: Consider the diffential equation we've seen before:

$$
2 y+x \frac{d y}{d x}=0
$$

Here $M=2 y$ and $N=x$, these are different so it's not exact. Let's look for some $f(x)$ so that when we multiply through the result is exact:

$$
2 y f(x)+x f(x) \frac{d y}{d x}=0
$$

For this to be exact we'd need:

$$
\begin{aligned}
{[x f(x)]_{x} } & =[2 y f(x)]_{y} \\
1 f(x)+x f^{\prime}(x) & =2 f(x)+2 y(0) \\
x f^{\prime}(x) & =f(x) \\
f^{\prime}(x) & =\frac{f(x)}{x}
\end{aligned}
$$

We can see that $f(x)=x$ does the job. This is then our integrating factor and we multiply our original differential equation through by it to get the exact differential equation

$$
2 x y+x^{2} \frac{d y}{d x}=0
$$

which has $H(x, y)=x^{2} y$ and hence solution $x^{2} y=C$.
Addendum: If we tried $g(y)$ we'd want this to be exact:

$$
2 y g(y)+x g(y) \frac{d y}{d x}=0
$$

This would mean:

$$
\begin{aligned}
{[x g(y)]_{x} } & =[2 y g(y)]_{y} \\
1 g(y)+x(0) & =2 g(y)+2 y g^{\prime}(y) \\
g^{\prime}(y) & =-\frac{g(y)}{2 y}
\end{aligned}
$$

It's much harder to see what might work here. Interestingly $g(y)=y^{-1 / 2}$ will work, yielding the exact:

$$
2 y^{1 / 2}+x y^{-1 / 2} \frac{d y}{d x}
$$

which has $H(x, y)=2 x y^{1 / 2}$ and hence solution $2 x y^{1 / 2}=C$.

Example 2: Consider the differential equation

$$
y+(x+x y) \frac{d y}{d x}=0
$$

Here $M=y$ and $N=x+x y$, these are different so it's not exact. Let's look for some $g(y)$ so that when we multiply through the result is exact:

$$
y g(y)+(x+x y) g(y) \frac{d y}{d x}=0
$$

For this to be exact we'd need:

$$
\begin{aligned}
{[(x+x y) g(y)]_{x} } & =[y g(y)]_{y} \\
(1+y) g(y) & =1 g(y)+y g^{\prime}(y) \\
g(y)+y g(y) & =g(y)+y g^{\prime}(y) \\
g^{\prime}(y) & =g(y)
\end{aligned}
$$

We can see that $g(y)=e^{y}$ does the job. This is then our integrating factor and we multiply our original differential equation through by it to get the exact differential equation

$$
y e^{y}+(x+x y) e^{y} \frac{d y}{d x}=0
$$

which has $H(x, y)=x y e^{y}$ and hence solution $x y e^{y}=C$.
Addendum: If we tried $f(x)$ we'd want this to be exact:

$$
y f(x)+(x+x y) f(x) \frac{d y}{d x}=0
$$

This would mean:

$$
\begin{aligned}
{[(x+x y) f(x)]_{x} } & =[y f(x)]_{y} \\
(1+y) f(x)+(x+x y) f^{\prime}(x) & =1 f(x)+y(0) \\
f(x)+y f(x)+(x+x y) f^{\prime}(x) & =f(x) \\
y f(x)+(x+x y) f^{\prime}(x) & =0 \\
f^{\prime}(x) & =-\frac{y f(x)}{(x+x y)}
\end{aligned}
$$

It's not at all obvious if anything this works.

