MATH 246: Chapter 2 Section 1: Intro to Higher Order Linear Justin Wyss-Gallifent
Main Topics:

- Reminder and Notation.
- Interval of Existence.

1. Introduction Since higher order DEs are difficult we're going to focus on linear higher order DEs. We'll narrow it down even more but for now that's where we are. Just a reminder that these look like, all in linear normal form:

$$
\begin{array}{ll}
\text { First-Order } & y^{\prime}+a(t) y=f(t) \text { (We can solve these) } \\
\text { Second-Order } & y^{\prime \prime}+a(t) y^{\prime}+b(t) y=f(t) \\
\text { Third-Order } & y^{\prime \prime \prime}+a(t) y^{\prime \prime}+b(t) y^{\prime}+c(t) y=f(t) \\
\text { Etc. } & \text { Etc. }
\end{array}
$$

2. Notation Note

It's not uncommon to see an alternate notation for the derivative from here on. We often write $D y$ instead of $y^{\prime}, D^{2} y$ instead of $y^{\prime \prime}$ and so on.

3. Existence Theory

The theory is similar to what we've seen for first-order but the initial value needs a bit more:

- A first order linear IVP requires knowing $y\left(t_{I}\right)=y_{0}$. There is a unique solution on the interval of existence which is the largest open interval containing t_{I} on which $a(t)$ and $f(t)$ are differentiable.
- A second order linear IVP requires knowing $y\left(t_{I}\right)=y_{0}$ and $y^{\prime}\left(t_{I}\right)=y_{1}$. There is a unique solution on the interval of existence which is the largest open interval containing t_{I} on which $a(t), b(t)$ and $f(t)$ are differentiable.
- A third order linear IVP requires knowing $y\left(t_{I}\right)=y_{0}$ and $y^{\prime}\left(t_{I}\right)=y_{1}$ and $y^{\prime \prime}\left(t_{I}\right)=y_{2}$. There is a unique solution on the interval of existence which is the largest open interval containing t_{I} on which $a(t), b(t), c(t)$ and $f(t)$ are differentiable.
- From here you can certainly see the pattern.

Note: The proof (of existence and uniqueness) is difficult. The special case for first order linear is easy and we saw it because we explicitly constructed the solution.
Example: $y^{\prime \prime}+\frac{1}{t} y^{\prime}-\frac{1}{t-3} y=t$ with $y(1)=17$ and $y^{\prime}(1)=2$ has a unique solution on $(0,3)$. If instead we have $y(4)=17$ then this has a unique solution on $(3, \infty)$.

Example: For $t^{-1 / 2} y^{\prime \prime}+e^{t} y^{\prime}-\sin (t) y=\frac{t}{6-t}$ with $y(1)=8$ and $y^{\prime}(1)=3$ we have to first rewrite in linear normal form as $y^{\prime \prime}+e^{t} \sqrt{t} y^{\prime}-\sqrt{t} \sin (t) y=\frac{t^{3 / 2}}{6-t}$ which then has a unique solution on $(0,6)$.

Example: The IVP $y^{\prime \prime \prime}-\frac{1}{t} y^{\prime \prime}+e^{t} y^{\prime}-\sin (t) y=\frac{t}{10-t}$ with $y(3)=8$ and $y^{\prime}(3)=3$ and $y^{\prime \prime}(3)=5$ has a unique solution on $(0,10)$.

Example: The IVP $D^{2} y-D y-2 y=0$ with $y(0)=1$ and $y^{\prime}(0)=-3$ has a unique solution on $(-\infty, \infty)$. If we notice that $y=e^{2 x}$ is a solution then we know it's the only solution.

