
MATH 246: Chapter 2 Section 2: Homogeneous Equations - Method and Theory
Justin Wyss-Gallifent

Main Topics:

• Definition of Homogeneous.

• Motivational Example for Second Order.

• Theory for Second and Third Order.

1. Introduction: Since even linear higher-order DEs are difficult we are going to simplify even
more. For today we’re going to look at homogeneous higher-order linear DEs, in which the forcing
function f(t) is equal to 0. That is:

First-Order y′ + a(t)y = 0
Second-Order y′′ + a(t)y′ + b(t)y = 0
Third-Order y′′′ + a(t)y′′ + b(t)y′ + c(t)y = 0
...

...

2. A Motivational Example: Consider the second-order homogeneous linear DE:

y′′ − y′ − 2y = 0

Next look at the following two functions, don’t worry about where they came from:

Y1(t) = e2t and Y2(t) = e−t

We can easily see that these are both solutions to the DE by plugging them (and their derivatives)
in and checking.

(a) Observation 1 - Getting More Solutions:

Notice that if we take a linear combination of these two, meaning

Y (t) = C1e
2t + C2e

−t

where C1 and C2 are constants. Then we can easily see that this is also a solution to the DE
by plugging it (and its derivatives) in and checking.

(b) Observation 2 - Getting All Solutions:

We can build new solutions from these two but can we build all solutions this way? Well
suppose that we had some solution to the DE, call it Y (t). What we want to know is if we
can find C1 and C2 so that Y (t) = C1e

2t + C2e
−t for this Y (t)?

Well, suppose we find that Y (0) = y0 and Y ′(0) = y1. Since Y ′(t) = 2C1e
2t − C2e

−t we
would need

y0 = Y (0) = C1 + C2

y1 = Y ′(0) = 2C2 − C2

Can we find such values? Since
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6= 0 there is a unique solution.

Notice now that since this is a solution to the IVP and since there is only one solution to
the IVP this must be the solution we were looking for.



(c) Observation 3 - Anything Special About Those Two?

We can’t just start with any two solutions. To see this observe that if we’d started with
Y1(t) = e2t and Y2(t) = 17e2t that both of these are solutions. Again any linear combi-
nation Y (t) = C1e

2t + C217e
2t is a solution. However is every solution to the DE a linear

combination? Again, suppose Y (t) is a solution and Y (0) = y0 and Y ′(0) = y1. Then
Y ′(t) = 2C1e

2t + 34C2e
2t and we would need

y0 = Y (0) = C1 + 17C2

y1 = Y ′(0) = 2C1 + 34C2

Since
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= 0 there may be no solution. That is, we can’t guarantee a solution.

3. Theory:

(a) Theory for Second-Order Homogeneous: y′′ + a(t)y′ + b(t)y = 0

• For a second-order homogeneous linear DE we need to find two solutions Y1(t) and Y2(t)
with a special relationship. That relationship is that their Wronskian does not equal the
zero function, where:

W [Y1, Y2] =
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Alternately the two solutions cannot be multiples of each other. They form a fundamental

set or fundamental pair of solutions {Y1(t), Y2(t)}.

• Every solution is then a linear combination of the fundamental pair. This means the
general solution is Y (t) = C1Y1(t) + C2Y2(t).

• A second-order IVP must provide y(tI) and y′(tI) in order to find the specific solution.

• This solution is unique on the interval of existence and uniqueness which is the largest
open interval containing tI on which a(t) and b(t) are differentiable.

(b) Theory for Third-Order Homogeneous: y′′′ + a(t)y′′ + b(t)y′ + c(t)y = 0

• For a third-order homogeneous linear DE we need to find three solutions Y1(t), Y2(t),
and Y3(t) with a special relationship. That relationship is that their Wronskian does
not equal the zero function, where:

W [Y1, Y2, Y3] =
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Alternately it must be impossible to write one of the solutions as a linear combination
of the others. They form a fundamental set of solutions {Y1(t), Y2(t), Y3(t)}.

• Every solution is then a linear combination of the fundamental set. This means the
general solution is Y (t) = C1Y1(t) + C2Y2(t) + C3Y3(t).

• A third-order IVP must provide y(tI), y
′(tI), and y′′(tI) in order to find the specific

solution.

• This solution is unique on the interval of existence and uniqueness which is the largest
open interval containing tI on which a(t) and b(t) and c(t) are differentiable.

(c) Theory for Higher-Order:

You can probably see the pattern.

(d) Critical Note: Don’t worry about where these fundamental sets are coming from right now,
just realize that we (somehow) need obtain them!



4. Practice for Both:

Here are some examples:

Example: Consider y′′ + 4y = 0. First we’ll show that Y1(t) = sin(2t) and Y2(t) =
cos(2t) form a fundamental pair. We check they are solutions (omitted) and we check:

W [Y1, Y2] =
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sin(2t) cos(2t)
2 cos(2t) −2 sin(2t)

∣
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= −2 sin2(2t)− 2 cos2(2t) = −2 6≡ 0

This tells us that Y1(t) and Y2(t) form a fundamental pair and that the general solution
is:

Y (t) = C1 sin(2t) + C2 cos(2t)

So now if we have the IVP with Y (0) = 4 and Y ′(0) = 2 we can find the specific solution
by first finding:

Y ′(t) = 2C1 cos(2t)− 2C2 sin(2t)

and then solving the system:

4 = Y (0) = C1 sin(2(0)) + C2 cos(2(0)) = C2

2 = Y ′(0) = 2C1 cos(2(0))− 2C2 sin(2(0)) = 2C1

So that C1 = 1 and C2 = 4 and the specific solution is:

Y (t) = sin(2t) + 4 cos(2t)

Example: Consider (1 + t2)y′′ − 2ty′ + 2y = 0. First we’ll show that Y1(t) = t and
Y2(t) = t2−1 form a fundamental pair. Notice that it doesn’t matter whether we divide
by 1 + t2 or not when we check these. We check they are solutions (omitted) and we
check:

W [Y1, Y2] =
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= 2t2 − (t2 − 1) = t2 + 1 6≡ 0

This tells us that Y1(t) and Y2(t) form a fundamental pair and that the general solution
is:

Y (t) = C1t+ C2(t
2 − 1)

So now if we have the IVP with Y (2) = −5 and Y ′(2) = 7 we can find the specific
solution by first finding:

Y ′(t) = C1 + 2C2t

and then solving the system:

−5 = Y (2) = C1(2) + C2(2
2 − 1) = 2C1 + 3C2

7 = Y ′(2) = C1 + 2C2(2) = C1 + 4C2

So that C1 = − 41

5
and C2 = − 19

5
and the specific solution is:

Y (t) = −
41

5
t+

19

5
(t2 − 1)



Example: Consider D3y − 2D2y = 0 First we’ll show that Y1(t) = 1, Y2(t) = t and
Y3(t) = e2t form a fundamental set. We check they are solutions (omitted) and we
check:

W [Y1, Y2, Y3] =
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= 4e2t 6≡ 0

This tells us that Y1(t), Y2(t) and Y3(t) form a fundamental set and that the general
solution is:

Y (t) = C1 + C2t+ C3e
2t

So now if we have the IVP with Y (0) = 1, Y ′(0) = 0 and Y ′′(0) = −4 we can find the
specific solution by first finding:

Y ′(t) = C2 + 2C3e
2t

Y ′′(t) = 4C3e
2t

and then solving the system:

1 = Y (0) = C1 + C3

0 = Y ′(0) = C2 + 2C3

−4 = Y ′′(0) = 4C3

So that C3 = −1, C2 = 2 and C1 = 2 and the specific solution is:

Y (t) = 2 + 2t− e2t



5. More about Fundamental Sets:

(a) Natural Fundamental Sets

There’s more than just one fundamental set, and one that comes up a lot is called the natural
fundamental set.

In the second-order case this is the set {Y1, Y2} with Y1 having Y1(tI) = 1 and Y ′

1
(tI) = 0

and with Y2 having Y2(tI) = 0 and Y ′

2
(tI) = 1.

In the third-order case this is the set {Y1, Y2, Y3} with Y1 having Y1(tI) = 1, Y ′

1
(tI) = 0, and

Y ′′

1
(tI) = 0, with Y2 having Y2(tI) = 0, Y ′

2
(tI) = 1, and Y ′′

2
(tI) = 0, and with Y3 having

Y3(tI) = 1, Y ′

3
(tI) = 0, and Y ′′

3
(tI) = 1,

Beyond there you can probably see the pattern.

(b) Reduction of Order (OMITTED)

The big question of course is where the fundamental set comes from. We’ll address that a
bit later but for now we have one helper.

If we have one solution Y1(t) then the second one is very often a multiple of the first. So we
can set Y2(t) = uY1(t) and when we plug this into the DE and use the fact that Y1(t) is a
solution we end up in a situation where we can find a first-order DE (hence the name) that
we can use to find u.

Example: You can check that Y1(t) = e5t is a solution to y′′ − 3y′ − 10y = 0. To find
the other by reduction of order we put Y2(t) = ue5t. We then find

Y ′

2
(t) = u′e5t + 5ue5t and

Y ′′

2
(t) = u′′e5t + 5u′e5t + 5u′e5t + 25ue5t = u′′e5t + 10u′e5t + 25ue5t

and plug these into the DE:

y′′ − 3y′ − 10y = 0

(u′′e5t + 10u′e5t + 25ue5t)− 3(u′e5t + 5ue5t)− 10(ue5t) = 0

u′′ + 10u′ + 25u− 3u′ − 15u− 10u = 0

u′′ + 7u′ = 0

If we let w = u′ then this gives us w′ + 7w = 0 which has solution w = Ce−7t and so
u′ = Ce−7t and so u = − 1

7
Ce−7t +D and another solution is

Y2(t) =

(

−
1

7
Ce−7t +D

)

e5t = −
1

7
Ce−2t +De5t

Since this is true for any C and D we can pick the solution

Y2(t) = e−2t

for which W [Y1, Y2] 6≡ 0 and we have our fundamental pair.


