
MATH 246: Chapter 3 Section 10: Population Dynamics
Justin Wyss-Gallifent

Main Topics:

• Predator-Prey Models

• Competing Species Models

• Cooperating Species Models

1. Predator-Prey Models

Consider a interaction between predators and prey. Suppose the number of prey is x(t) while the
number of predators is y(t). A simple but reasonable system of differential equations modeling
these could be:

x′ = (r − ax− by)x

y′ = (−s + cx− dy)y

To understand the meaning of these constants, consider that r − ax − by is the growth rate for
prey while −x+ cx− dy is the growth rate for predators. This is the reason they’re multiplied by
x and y respectively to get x′ and y′. Moreover:

• The constant r > 0 gives the intrinsic growth rate of the prey. This is positive because by
default (in absence of predators) the prey will reproduce.

• The growth rate of prey may decline as the number of prey grows due to competetiveness.
This is managed by the constant a ≥ 0.

• The growth rate of the prety will decline as the number of predators grows. This is managed
by the constant d > 0.

• The constant s > 0 gives the intrinsic growth rate of the predators. We have −s because by
default (in absense of prey) the predators will die out.

• The growth rate of predators will increase with the number of prey. This is managed by the
constant c > 0.

• The growth rate of predators may decline as the number of predators grows due to compete-
tiveness. This is managed by the constant d ≥ 0.

Our goal will be to analyze such systems and understand what happens to the populations in the
long term.



Example: Consider the model:

x′ = (12 − 2x− 3y)x

y′ = (−15 + 5x)y

There are three stationary points which we analyze as follows:

• (0, 0) has ∂F̄ =

[
12 0
0 −15

]
with eigenpairs

(
12,

[
1
0

])
,

(
−15,

[
0
1

])
.

It follows that this is a saddle.

• (6, 0) has ∂F̄ =

[
−12 −18

0 15

]
with eigenpairs

(
−12,

[
1
0

])
,

(
15,

[
−2

3

])
It follows that this is a saddle.

• (3, 2) has ∂F̄ =

[
−6 −9
10 0

]
with eigenvalues −3 ± 9i.

It follows that this is a counterclockwise spiral sink.

The following picture was pilfered from Levermore’s notes:

So now an initial population of (0.1, 2) will undergo a decrease in predators, resulting
in an increase in prey, resulting in an increase in predators, resulting in a decrease in
prey, and so on, and will eventually spiral into the stable point (3, 2).



Example: Consider the model:

x′ = (6 − 3y)x

y′ = (−15 + 5x)y

There are two stationary points which we analyze as follows:

• (0, 0) has ∂F̄ =

[
12 0
0 −15

]
with eigenpairs

(
6,

[
1
0

])
,

(
−15,

[
0
1

])
.

It follows that this is a saddle.

• (3, 2) has ∂F̄ =

[
0 −9

10 0

]
with eigenvalues 0 ± 90i.

It follows that this is a counterclockwise circle.

The following picture was pilfered from Levermore’s notes:

So now an initial population in the first quadrant will tend to circle around (3, 2) but
it will not approach it in a spiral sense.



2. Competing Species Models

Competing species models look liks this:

x′ = (r − ax− by)x

y′ = (s− cx− dy)y

Example: Consider the model:

x′ = (16 − 4x− 2y)x

y′ = (10 − x− 2y)y

There are four stationary points which we analyze as follows:

• (0, 0) has ∂F̄ =

[
16 0
0 10

]
with eigenpairs

(
16,

[
1
0

])
,

(
10,

[
0
1

])
.

It follows that this is a nodal source..

• (0, 5) has ∂F̄ =

[
6 0

−5 −10

]
with eigenpairs

(
6,

[
16
−5

])
,

(
−10,

[
0
1

])
It follows that this is a saddle.

• (4, 0) has ∂F̄ =

[
−16 −8

0 6

]
with eigenpairs

(
−16,

[
1
0

])
,

(
6,

[
−4
11

])
It follows that this is a saddle.

• (2, 4) has ∂F̄ =

[
−8 −4
−4 −8

]
with eigenpairs

(
−12,

[
1
1

])
,

(
−4,

[
1

−1

])
It follows that this is a nodal sink.

The following picture was pilfered from Levermore’s notes:

We see that if an initial population has both x and y positive then it will tend towards
(2, 4) but this can happen in a variety of ways.
For example if we start at (10, 0.1) this means there are lots of species x and few of
species y. Because there are a lot of species x they are constrained by resources and
hence their population drops. When it gets close to x = 4 however the rate of drop
decreases and at that point resources are not so constraining it tends to start to stabilize.
However at that point since x and y are competing y can grow now, since there aren’t
so many x. And so it does, and this causes x to drop more. In the long term (infinity)
the pair heads to (2, 4).



3. Cooperating Species Models

Cooperating species models look like this;

x′ = (r − ax + by)x

y′ = (s + cx− dy)y

Example: Consider the model:

x′ = (27 − 9x + y)x

y′ = (20 + 4x− 4y)y

There are four stationary points which we analyze as follows:

• (0, 0) has ∂F̄ =

[
27 0
0 20

]
with eigenpairs

(
27,

[
1
0

])
,

(
20,

[
0
1

])
.

It follows that this is a nodal source..

• (0, 5) has ∂F̄ =

[
32 0
20 −20

]
with eigenpairs

(
32,

[
13
5

])
,

(
−20,

[
0
1

])
It follows that this is a saddle.

• (3, 0) has ∂F̄ =

[
−27 3

0 32

]
with eigenpairs

(
−27,

[
1
0

])
,

(
32,

[
3

59

])
It follows that this is a saddle.

• (4, 9) has ∂F̄ =

[
−36 9

16 −36

]
with eigenpairs

(
−24,

[
3
4

])
,

(
−48,

[
3

−4

])
It follows that this is a nodal sink.

The following picture was pilfered from Levermore’s notes:

We see that if an initial population has both x and y positive then it will tend towards
(4, 9) but this can happen in a variety of ways.


