MATH 246: Chapter 3 Section 2: Basic Theory and Notation for Systems Justin Wyss-Gallifent
Main Topics:

- Linear Algebra Notation
- Theory for Homogeneous
- The Fundamental Matrix
- Comment on Nonhomogeneous


## 1. Matrix and Vector Notation for Systems of First Order Linear DEs

Consider the following:

- A first order linear system of differential equations may be written:

$$
\bar{x}^{\prime}=A(t) \bar{x}+\bar{f}(t)
$$

- This system is homogeneous when $\bar{f}(t)=\overline{0}$ and we say the system has constant coefficients when the matrix $A(t)$ is all constants.
- An initial value can then be written as $\bar{x}\left(t_{I}\right)=\bar{x}_{I}$,
- The solution can then be given as a single $\bar{x}$.

Example: Consider the following initial value problem:

$$
\begin{array}{ll}
x_{1}^{\prime}=3 x_{1}+2 t x_{2}+t & x_{1}(0)=1 \\
x_{2}^{\prime}=t^{2} x_{1}+3 x_{2} & x_{2}(0)=-2
\end{array}
$$

This can be rewritten as:

$$
\underbrace{\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]}_{\bar{x}^{\prime}}=\underbrace{\left[\begin{array}{rr}
3 & 2 t \\
t^{2} & 3
\end{array}\right]}_{A(t)} \underbrace{\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]}_{\bar{x}}+\underbrace{\left[\begin{array}{c}
t \\
0
\end{array}\right]}_{\bar{f}(t)} \text { with } \underbrace{\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]}_{\bar{x}(0)}=\underbrace{\left[\begin{array}{r}
1 \\
-2
\end{array}\right]}_{\bar{x}_{I}}
$$

Thus more simply:

$$
\bar{x}^{\prime}=\left[\begin{array}{rr}
3 & 2 t \\
t^{2} & 3
\end{array}\right] \bar{x}+\left[\begin{array}{c}
t \\
0
\end{array}\right] \text { with } \bar{x}(0)=\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
$$

Example: Consider the following solution:

$$
\bar{x}^{\prime}=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right] \bar{x}
$$

One solution to this is:

$$
\bar{x}=\left[\begin{array}{c}
e^{5 t} \\
e^{5 t}
\end{array}\right]
$$

This can be checked with a matrix calculation:

$$
\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right] \bar{x}=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
e^{5 t} \\
e^{5 t}
\end{array}\right]=\left[\begin{array}{l}
3 e^{5 t}+2 e^{5 t} \\
2 e^{5 t}+3 e^{5 t}
\end{array}\right]=\left[\begin{array}{c}
5 e^{5 t} \\
5 e^{5 t}
\end{array}\right]=\bar{x}^{\prime}
$$

## 2. Theory for Homogeneous - Fundamental Sets and Fundamental Matrices

Note: In what follows I've written $n=2$ to mean that I'm giving a specific example that generalizes. You could substitute $n=3,4, \ldots$ and the theory would still be good. In cases where it's not clear what happens for $3,4, \ldots$ I've said more.
Theory: A homogeneous system of $n=2$ DEs has a fundamental pair/set consisting of $n=2$ solutions $\bar{x}_{1}$ and $\bar{x}_{2}($ more if $n \geq 3)$
A fundamental set has nonzero Wronskian where

$$
W\left[\bar{x}_{1}, \bar{x}_{2}\right]=\left|\bar{x}_{1} \quad \bar{x}_{2}\right|
$$

That determinant is just found by dumping the vectors $\bar{x}_{1}$ and $\bar{x}_{2}$ together in in a matrix and going from there.
When we have a fundamental pair/set the matrix used to determine the Wronskian is called the fundamental matrix and is usually denoted $\Psi$ or $\Psi(t)$.
The general solution to the system then consists of all linear combinations of those $n=2$ solutions, this can be written several ways:

$$
\bar{x}(t)=c_{1} \bar{x}_{1}+c_{2} \bar{x}_{2}=\left[\begin{array}{ll}
\bar{x}_{1} & \bar{x}_{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\Psi(t)\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\Psi(t) \bar{c}
$$

Example: Consider the system

$$
\bar{x}^{\prime}=\left[\begin{array}{rr}
t^{2} & 2 t-t^{4} \\
1 & -t^{2}
\end{array}\right] \bar{x}
$$

This has solutions (calculation omitted) $\left\{\bar{x}_{1}, \bar{x}_{2}\right\}=\left\{\left[\begin{array}{r}1+t^{3} \\ t\end{array}\right],\left[\begin{array}{r}t^{2} \\ 1\end{array}\right]\right\}$.
These form a fundamental pair because $W\left[\bar{x}_{1}, \bar{x}_{2}\right]=\left|\begin{array}{rr}1+t^{3} & t^{2} \\ t & 1\end{array}\right|=1 \not \equiv 0$.
Consequently the general solution to the system is:

$$
\bar{x}(t)=c_{1}\left[\begin{array}{r}
1+t^{3} \\
t^{2}
\end{array}\right]+c_{2}\left[\begin{array}{r}
t^{2} \\
1
\end{array}\right]=\left[\begin{array}{r}
c_{1}\left(1+t^{3}\right)+c_{2} t^{2} \\
c_{1} t^{2}+c_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{rr}
1+t^{3} & t^{2} \\
t^{2} & 1
\end{array}\right]}_{\Psi(t)} \underbrace{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]}_{\bar{c}}
$$

It's worth noting that if we go back and think of the original problem as:

$$
\begin{aligned}
& x_{1}^{\prime}=t^{2} x_{1}+\left(2 t-t^{4}\right) x_{2} \\
& x_{2}^{\prime}=x_{2}-t^{2} x_{2}
\end{aligned}
$$

Then the general solution is:

$$
\begin{aligned}
& x_{1}=c_{1}\left(1+t^{3}\right)+c_{2} t^{2} \\
& x_{2}=c_{1} t+c_{2}
\end{aligned}
$$

Example 1: Consider the system

$$
\bar{x}^{\prime}=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right] \bar{x}
$$

This has solutions (calculation omitted) $\left\{\bar{x}_{1}, \bar{x}_{2}\right\}=\left\{\left[\begin{array}{c}e^{5 t} \\ e^{5 t}\end{array}\right],\left[\begin{array}{c}e^{t} \\ -e^{t}\end{array}\right]\right\}$.
These form a fundamental pair because $W\left[\bar{x}_{1}, \bar{x}_{2}\right]=\left|\begin{array}{rr}e^{5 t} & e^{t} \\ e^{5 t} & -e^{t}\end{array}\right|=-2 e^{6 t} \not \equiv 0$.
Consequently the general solution to the system is:

$$
\bar{x}(t)=c_{1}\left[\begin{array}{c}
e^{5 t} \\
e^{5 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
e^{t} \\
-e^{t}
\end{array}\right]=\left[\begin{array}{c}
c_{1} e^{5 t}+c_{2} e^{t} \\
c_{1} e^{5 t}-c_{2} e^{t}
\end{array}\right]=\underbrace{\left[\begin{array}{rr}
e^{5 t} & e^{t} \\
e^{5 t} & -e^{t}
\end{array}\right]}_{\Psi(t)} \underbrace{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]}_{\bar{c}}
$$

If we turn this into an initial value problem with the initial condition:

$$
\bar{x}(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Then we can find the specific solution using a simple matrix calculation:

$$
\begin{aligned}
\bar{x}(0) & =\Psi(0) \bar{c} \\
{\left[\begin{array}{l}
1 \\
2
\end{array}\right] } & =\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \bar{c} \\
\bar{c} & =\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\bar{c} & =\frac{1}{-2}\left[\begin{array}{rr}
-1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
\bar{c} & =-\frac{1}{2}\left[\begin{array}{r}
-3 \\
1
\end{array}\right] \\
\bar{c} & =\left[\begin{array}{r}
3 / 2 \\
-1 / 2
\end{array}\right]
\end{aligned}
$$

Hence the specific solution can be written a few ways:

$$
\bar{x}(t)=\Psi(t) \bar{c}=\left[\begin{array}{rr}
e^{5 t} & e^{t} \\
e^{5 t} & -e^{t}
\end{array}\right]\left[\begin{array}{r}
3 / 2 \\
-1 / 2
\end{array}\right]=\frac{3}{2}\left[\begin{array}{c}
e^{5 t} \\
e^{5 t}
\end{array}\right]-\frac{1}{2}\left[\begin{array}{r}
e^{t} \\
-e^{t}
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} e^{5 t}-\frac{1}{2} e^{t} \\
\frac{3}{2} e^{5 t}+\frac{1}{2} e^{t}
\end{array}\right]
$$

It's worth noting that if we go back and think of the original problem as the IVP:

$$
\begin{array}{ll}
x_{1}^{\prime}=3 x_{1}+2 x_{2} & x_{1}(0)=1 \\
x_{2}^{\prime}=2 x_{1}+3 x_{2} & x_{2}(0)=2
\end{array}
$$

Then the specific solution is:

$$
\begin{aligned}
& x_{1}=\frac{3}{2} e^{5 t}-\frac{1}{2} e^{t} \\
& x_{2}=\frac{3}{2} e^{5 t}+\frac{1}{2} e^{t}
\end{aligned}
$$

## 3. Natural Fundamental Sets and Matrices

The natural fundamental matrix associated to a specific $t_{I}$ is a specific fundamental matrix which is incredibly useful.
Suppose we solve the two initial value problems:

$$
\bar{x}^{\prime}=A \bar{x} \text { with } \bar{x}\left(t_{I}\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \longrightarrow \text { call this solution } x_{1}
$$

and

$$
\bar{x}^{\prime}=A \bar{x} \text { with } \bar{x}\left(t_{I}\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \longrightarrow \text { call this solution } x_{2}
$$

we get what are known together as the natural fundamental set associated to $t_{I}$ and if we put these together in a matrix we get the natural fundamental matrix associated to $t_{I}$ which is denoted $\Phi(t)$ or just $\Phi$. There is only one of these for a given $t_{I}$.

Example: Consider the system:

$$
\bar{x}^{\prime}=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right] \bar{x}
$$

This has natural fundamental matrix associated to $t_{I}=0$ of:

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{1}{2} e^{5 t}+\frac{1}{2} e^{t} & \frac{1}{2} e^{5 t}-\frac{1}{2} e^{t} \\
\frac{1}{2} e^{5 t}-\frac{1}{2} e^{t} & \frac{1}{2} e^{5 t}+\frac{1}{2} e^{t}
\end{array}\right]
$$

This matrix $\Phi(t)$ is incredibly useful. To see this, suppose we have a system given by

$$
\bar{x}^{\prime}=A(t) \bar{x}
$$

If we have the natural fundamental matrix $\Phi(t)$ assoicated to some $t_{I}$ and we wish to solve the initial value problem with:

$$
\bar{x}\left(t_{I}\right)=\bar{x}_{I}=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

Consider the vector:

$$
\bar{x}(t)=\Phi(t) \bar{x}_{I}
$$

Observe that by definition of matrix/vector multiplication we have:

$$
\bar{x}(t)=\Phi(t) \bar{x}_{I}=\left[\begin{array}{ll}
\bar{x}_{1} & \bar{x}_{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=a \bar{x}_{1}+b \bar{x}_{2}
$$

Since $\bar{x}$ is a linear combination of $\bar{x}_{1}$ and $\bar{x}_{2}$ it is a solution to the DE. Moreover observe that:

$$
\bar{x}\left(t_{I}\right)=\Phi\left(t_{I}\right) \bar{x}_{I}=\Phi\left(t_{I}\right)\left[\begin{array}{l}
a \\
b
\end{array}\right]=a \bar{x}_{1}\left(t_{I}\right)+b \bar{x}_{2}\left(t_{I}\right)=a\left[\begin{array}{l}
1 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
a \\
b
\end{array}\right]=\bar{x}_{I}
$$

It follows that the solution to the IVP is simply given by:

$$
\bar{x}(t)=\Phi(t) \bar{x}_{I}
$$

This is handy when we need to solve repeated initial value problems with the same $t_{I}$.
Example:
Revisit the system:

$$
\bar{x}^{\prime}=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right] \bar{x}
$$

We saw this has natural fundamental matrix associated to $t_{I}=0$ of:

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{1}{2} e^{5 t}+\frac{1}{2} e^{t} & \frac{1}{2} e^{5 t}-\frac{1}{2} e^{t} \\
\frac{1}{2} e^{5 t}-\frac{1}{2} e^{t} & \frac{1}{2} e^{5 t}+\frac{1}{2} e^{t}
\end{array}\right]
$$

So now we can throw out solutions to IVPs easily:

- If we have: $\bar{x}(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$

Then the solution is:

$$
\bar{x}=\Phi(t)\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} e^{5 t}+\frac{1}{2} e^{t} & \frac{1}{2} e^{5 t}-\frac{1}{2} e^{t} \\
\frac{1}{2} e^{5 t}-\frac{1}{2} e^{t} & \frac{1}{2} e^{5 t}+\frac{1}{2} e^{t}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} e^{5 t}-\frac{1}{2} e^{t} \\
\frac{3}{2} e^{5 t}+\frac{1}{2} e^{t}
\end{array}\right]
$$

- If we have: $\bar{x}(0)=\left[\begin{array}{r}4 \\ -2\end{array}\right]$

Then the solution is:

$$
\bar{x}=\Phi(t)\left[\begin{array}{r}
4 \\
-2
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} e^{5 t}+\frac{1}{2} e^{t} & \frac{1}{2} e^{5 t}-\frac{1}{2} e^{t} \\
\frac{1}{2} e^{5 t}-\frac{1}{2} e^{t} & \frac{1}{2} e^{5 t}+\frac{1}{2} e^{t}
\end{array}\right]\left[\begin{array}{r}
4 \\
-2
\end{array}\right]=\left[\begin{array}{c}
e^{5 t}+3 e^{t} \\
e^{5 t}-3 e^{t}
\end{array}\right]
$$

What's even better is that if we have any fundamental matrix $\Psi(t)$ then we can find the natural fundamental matrix for any $t_{I}$ by calculating:

$$
\Phi(t)=\Psi(t) \Psi\left(t_{I}\right)^{-1}
$$

## Example:

The system:

$$
\bar{x}^{\prime}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] \bar{x}
$$

has fundamental matrix:

$$
\Psi(t)=\left[\begin{array}{rr}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right]
$$

Suppose we wish to solve the IVP with $\bar{x}(0)=\left[\begin{array}{l}2 \\ 7\end{array}\right]$.
We first find $\Phi$ associated to $t_{I}=0$ by doing the following:

$$
\begin{aligned}
\Phi & =\Psi(t) \Psi(0)^{-1} \\
& =\left[\begin{array}{rr}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
1 & 0
\end{array}\right]^{-1} \\
& =\left[\begin{array}{rr}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right] \frac{1}{-1}\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right] \\
& =\left[\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right]
\end{aligned}
$$

Then the solution to the IVP is given by:

$$
\bar{x}=\Phi \bar{x}_{I}=\left[\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right]\left[\begin{array}{l}
2 \\
7
\end{array}\right]=\left[\begin{array}{r}
2 \cos x+7 \sin x \\
-2 \sin x+7 \cos x
\end{array}\right]
$$

