MATH 246: Chapter 3 Section 3: Matrix and Vector Essentials Justin Wyss-Gallifent
Main Topics:

- Basic Definitions
- Combining Matrices and Vectors
- Inverses
- Determinants
- Transpose and Complex Conjugate
- Eigenstuff


## 1. Introduction:

It's far easier to manage systems of differential equations when we can rephrase them in the language of matrices and vectors. To that end, here are the essentials.

## 2. Basic Definitions:

(a) A matrix is a rectangular array of numbers. It has size $m \times n$ if there are $m$ rows and $n$ columns. Matrices are typically denoted using capital letters:
Example: Here is a $3 \times 4$ matrix:

$$
A=\left[\begin{array}{cccc}
1 & 3 & -1 & 0 \\
0 & 5 & 0 & 17 \\
2 & 2 & -7 & 3
\end{array}\right]
$$

(b) Most of the matrices in this class will be square, meaning they have the same number of rows and columns. Mostly we'll deal with $2 \times 2$ and $3 \times 3$ matrices.
(c) The identity matrix $I_{n}$ is the square $n \times n$ matrix with 1 s on the main diagonal (upper-left to lower right) and 0s elsewhere. When the size is clear from context we just write $I$.
Example:

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(d) The zero matrix is matrix of all zeros.
(e) A vector is a matrix which is a single column. Vectors are usually denoted in lower-case with a bar over the letter.
Example: $\bar{a}=\left[\begin{array}{r}1 \\ -3 \\ 2\end{array}\right]$

## 3. Combining Matrices and Vectors:

(a) We can add matrices and vectors by adding matching entries provided they both have the same size.
Example: For example:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{rr}
-1 & 0 \\
6 & 2
\end{array}\right]=\left[\begin{array}{ll}
1-1 & 2+0 \\
3+6 & 4+2
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
9 & 8
\end{array}\right]
$$

(b) We can multiply an $n \times n$ matrix $A$ by a vector $\bar{x}$ with $n$ entries to get a new vector with $n$ entries. The formal definition of this is that we take the linear combination of the columns of $A$ using the weights in $\bar{x}$. More informally we do this by multiplying each row of the matrix by the vector (element by element and add). This is easier to see:
Example: We have:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 4 & 7 \\
8 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
5 \\
3 \\
2
\end{array}\right] } & =5\left[\begin{array}{l}
1 \\
0 \\
8
\end{array}\right]+3\left[\begin{array}{r}
2 \\
4 \\
-1
\end{array}\right]+2\left[\begin{array}{r}
-3 \\
7 \\
5
\end{array}\right] \\
& =\left[\begin{array}{r}
(1)(5)+(2)(3)+(-3)(2) \\
(0)(5)+(4)(3)+(7)(2) \\
(8)(5)+(-1)(3)+(5)(2)
\end{array}\right] \\
& =\left[\begin{array}{r}
5 \\
26 \\
47
\end{array}\right]
\end{aligned}
$$

(c) We can multiply an $n \times n$ matrix by another $n \times n$ matrix by multiplying the first matrix by each of the columns in the second matrix as if it were just a vector, then taking these new vectors an putting them together in a new matrix.
Example: Here it is with lots of brackets to help you see what's going on:

$$
\begin{aligned}
{\left[\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right]\left[\begin{array}{rr}
-1 & 3 \\
5 & 9
\end{array}\right] } & =\left[\left[\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right]\left[\begin{array}{r}
-1 \\
5
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
9
\end{array}\right]\right] \\
& =\left[\left[\begin{array}{c}
(2)(-1)+(1)(5) \\
(4)(-1)+(3)(5)
\end{array}\right]\left[\begin{array}{l}
(2)(3)+(1)(9) \\
(4)(3)+(3)(9)
\end{array}\right]\right] \\
& =\left[\begin{array}{ll}
3 & 15 \\
9 & 39
\end{array}\right]
\end{aligned}
$$

(d) It's almost always the case that for matrices $A$ and $B$ that $A B \neq B A$.
(e) The identity matrix acts like the number 1 in that for any matrix $A$ we have:

$$
A I=I A=A
$$

## 4. Determinants:

(a) The determinant of a matrix, denoted $\operatorname{det} A$ or by putting the matrix in vertical bars instead of brackets, is a number calculated from the matrix. We've seen this for $2 \times 2$ and $3 \times 3$ matrices.
(b) Properties include:

- A matrix $A$ has an inverse if and only if $\operatorname{det} A \neq 0$.
- For a $2 \times 2$ case $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.


## 5. Inverses:

(a) The inverse of an $n \times n$ matrix $A$ is another matrix denoted $A^{-1}$ such that $A A^{-1}=A^{-1} A=I$. It's like a "reciprocal" for matrices.
(b) For the $2 \times 2$ size there is a formula:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Example: For example:

$$
\left[\begin{array}{rr}
1 & 3 \\
2 & -2
\end{array}\right]^{-1}=\frac{1}{(1)(-2)-(3)(2)}\left[\begin{array}{rr}
2 & -3 \\
1 & 2
\end{array}\right]=\frac{1}{-8}\left[\begin{array}{rr}
2 & -3 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rr}
-1 / 4 & 3 / 8 \\
-1 / 8 & -1 / 4
\end{array}\right]
$$

(c) Properties include:

- $\left(A^{-1}\right)^{-1}=A$
- $(A B)^{-1}=B^{-1} A^{-1}$
- $(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$
- We have $\operatorname{det}\left(A^{-1}\right)=1 /(\operatorname{det} A)$.


## 6. Transpose and Complex Conjugate:

(a) The transpose of an $n \times n$ matrix $A$, denoted $A^{T}$, is found by reflecting the matrix in its main diagonal.
Example: We have:

$$
\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 4 & 7 \\
8 & -1 & 5
\end{array}\right]^{T}=\left[\begin{array}{ccc}
1 & 0 & 8 \\
2 & 4 & -1 \\
-3 & 7 & 5
\end{array}\right]
$$

(b) A matrix may have complex numbers in it, in which case its comples conjugate denoted either $\bar{A}$ or $A^{c}$, is found by taking the complex conjugate of each entry.
Example: We have:

$$
\left[\begin{array}{rr}
1-2 i & 5 \\
5+i & 7+8 i
\end{array}\right]^{C}=\left[\begin{array}{rr}
1+2 i & 5 \\
5-i & 7-8 i
\end{array}\right]
$$

## 7. Eigenstuff:

If we have a matrix, the determinant is the most important number associated to it. After the determinant the next most important items are eigenvalues and eigenvectors.
(a) If $A$ is an $n \times n$ matrix, an eigenvalue of $A$ is a number $\lambda$ with the property that there is some $\bar{v} \neq \overline{0}$ such that $A \bar{v}=\lambda \bar{v}$. The vector $\bar{v}$ is then an eigenvector associated to $\lambda$ and we say that $(\lambda, \bar{v})$ is an eigenpair of $A$.
Example: Observe that:

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

so we would say that $\lambda=3$ is an eigenvalue, $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector and $\left(3,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ is an eigenpair for the matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$.
(b) Any nonzero multiple of an eigenvector is also an eigenvector, so in the above example $\left[\begin{array}{l}2 \\ 2\end{array}\right]$, $\left[\begin{array}{l}17 \\ 17\end{array}\right]$ and $\left[\begin{array}{c}-7 \\ -7\end{array}\right]$ are all eigenvectors for the same eigenvalue.
(c) If we have a complex eigenpair $(\lambda, \bar{v})$ then $(\bar{\lambda}, \overline{\bar{v}})$ is also an eigenpair.
(d) Given an $n \times n$ matrix $A$, the value $\lambda$ will be an eigenvalue if and only if there is some $\bar{v} \neq \overline{0}$ such that

$$
A \bar{v}=\lambda \bar{v}
$$

We can manipulate this:

$$
\begin{aligned}
\lambda \bar{v}-A \bar{v} & =\overline{0} \\
\lambda I \bar{v}-A \bar{v} & =\overline{0} \\
(\lambda I-A) & =\overline{0}
\end{aligned}
$$

This will have a nontrivial solution precisely when:

$$
\operatorname{det}(\lambda I-A)=0
$$

So what we do is we define the characteristic polynomial of $A$ as:

$$
p(z)=\operatorname{det}(z I-A)
$$

Then we know that the eigenvalues of $A$ are the roots of this characteristic polynomial.

Example: To find the eigenvalues of

$$
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]
$$

we find

$$
\begin{aligned}
p(z) & =\operatorname{det}(z I-A) \\
& =\operatorname{det}\left(z\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
z & 0 \\
0 & z
\end{array}\right]-\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]\right) \\
& =\operatorname{det}\left[\begin{array}{rr}
z-3 & -2 \\
-2 & z-3
\end{array}\right] \\
& =(z-3)(z-3)-4 \\
& =z^{2}-6 z+5 \\
& =(z-5)(z-1)
\end{aligned}
$$

The eigenvalues are then the roots so $\lambda_{1}=5$ and $\lambda_{2}=1$.
Example: To find the eigenvalues of

$$
A=\left[\begin{array}{rr}
4 & -1 \\
1 & 2
\end{array}\right]
$$

we find

$$
\begin{aligned}
p(z) & =\operatorname{det}(z I-A) \\
& =\operatorname{det}\left(z\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{rr}
4 & -1 \\
1 & 2
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
z & 0 \\
0 & z
\end{array}\right]-\left[\begin{array}{rr}
4 & -1 \\
1 & 2
\end{array}\right]\right) \\
& =\operatorname{det}\left[\begin{array}{rr}
z-4 & 1 \\
-1 & z-2
\end{array}\right] \\
& =(z-4)(z-2)+1 \\
& =z^{2}-6 z+9 \\
& =(z-3)^{2}
\end{aligned}
$$

The only eigenvalue is the root $\lambda=3$. However this multiplicity counts, so we can think $\lambda_{1}=3$ and $\lambda_{2}=3$.

Example: To find the eigenvalues of

$$
A=\left[\begin{array}{rr}
3 & 2 \\
-2 & 3
\end{array}\right]
$$

we find

$$
\begin{aligned}
p(z) & =\operatorname{det}(z I-A) \\
& =\operatorname{det}\left(z\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{rr}
3 & 2 \\
-2 & 3
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
z & 0 \\
0 & z
\end{array}\right]-\left[\begin{array}{rr}
3 & 2 \\
-2 & 3
\end{array}\right]\right) \\
& =\operatorname{det}\left[\begin{array}{rr}
z-3 & -2 \\
2 & z-3
\end{array}\right] \\
& =(z-3)(z-3)+4 \\
& =z^{2}-6 z+13
\end{aligned}
$$

This does not factor so we use the quadratic formula:

$$
z=\frac{6 \pm \sqrt{(-6)^{2}-4(1)(13)}}{2}=3 \pm 2 i
$$

The eigenvalues are then $\lambda_{1}=3+2 i$ and $\lambda_{2}=3-2 i$.
(e) Once we find the eigenvalues we take each eigenvalue $z=\lambda$ and solve the matrix equation $A \bar{v}=\lambda \bar{v}$, or $A \bar{v}-\lambda \bar{v}=\overline{0}$, or $(A-\lambda I) \bar{v}=\overline{0}$. This can be fairly intensive for large cases. For the $2 \times 2$ case there is a trick, though, which is really useful:

For $\lambda_{1}$ choose any nonzero column of $A-\lambda_{2} I$.
For $\lambda_{2}$ choose any nonzero column of $A-\lambda_{1} I$.
Example: We saw that the eigenvalues for $A=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$ are $\lambda_{1}=5$ and $\lambda_{2}=1$. Then:

- For $\lambda_{1}=5$ choose any nonzero column of

$$
A-\lambda_{2} I=A-1 I=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]
$$

so $\left[\begin{array}{l}2 \\ 2\end{array}\right]$ will do. Since any multiple of this works, pick the nicer $\bar{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

- For $\lambda_{2}=1$ choose any nonzero column of

$$
A-\lambda_{1} I=A-5 I=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]-\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]=\left[\begin{array}{rr}
-2 & 2 \\
2 & -2
\end{array}\right]
$$

so $\left[\begin{array}{r}-2 \\ 2\end{array}\right]$ will do. Since any multiple of this works, pick the nicer $\bar{v}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
We thus have eigenpairs $\left(5,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ and $\left(1,\left[\begin{array}{r}1 \\ -1\end{array}\right]\right)$.
Example: We saw that the eigenvalue for $A=\left[\begin{array}{rr}4 & -1 \\ 1 & 2\end{array}\right]$ is $\lambda_{1}=\lambda_{2}=3$. Then:

- For $\lambda_{1}=3$ choose any nonzero column of $A-\lambda_{2} I=A-3 I=\left[\begin{array}{rr}4 & -1 \\ 1 & 2\end{array}\right]-$ $\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]=\left[\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right]$ so $\bar{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ will do.
- Notice that $\lambda_{2}=\lambda_{1}$ so we get nothing new.

We thus have the single eigenpair $\left(3,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$.
Example: We saw that the eigenvalues for $A=\left[\begin{array}{rr}3 & 2 \\ -2 & 3\end{array}\right]$ are $\lambda_{1}=3+2 i$ and $\lambda_{2}=3-2 i$. Then:

- For $\lambda_{1}=3+2 i$ choose any nonzero column of

$$
A-\lambda_{2} I=A-(3+2 i) I=\left[\begin{array}{rr}
3 & 2 \\
-2 & 3
\end{array}\right]-\left[\begin{array}{rr}
3+2 i & 0 \\
0 & 3+2 i
\end{array}\right]=\left[\begin{array}{rr}
2 i & 2 \\
-2 & -2 i
\end{array}\right]
$$

so $\left[\begin{array}{r}2 i \\ -2\end{array}\right]$ will do. Since any multiple of this works, we pick the nicer $\bar{v}_{1}=\left[\begin{array}{c}1 \\ i\end{array}\right]$.

- We know from earlier that for $\lambda_{2}=3-2 i$ we can use the conjugate so $\bar{v}_{2}=\left[\begin{array}{c}1 \\ -i\end{array}\right]$.

We thus have eigenpairs $\left(3+2 i,\left[\begin{array}{c}1 \\ i\end{array}\right]\right)$ and $\left(3-2 i,\left[\begin{array}{c}1 \\ -i\end{array}\right]\right)$.

