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Main Topics:

• Introduction

• Real Eigenvalues with Multiplicty 1

• Real Eigenvalues with Multiplicity 2

• Pairs of Complex Eigenvalues

1. Using Eigenpairs to Construct Solutions:

If we go back to x̄′ = Ax̄ observe that if (λ, v̄) is an eigenpair then it turns out that x̄ = eλtv̄ is a
solution:

x̄′ =
d

dt

(
eλtv̄

)
= eλtλv̄ = eλtAv̄ = Aeλtv̄ = Ax̄

This tells that an eigenpair yields a solution.

However there are some nuances. The process gets signficantly harder at the 3 × 3 case and
above as we have to start to consider things like eigenspace dimensions and obtaining linearly
independent sets of eigenvalues. Consequently we will stay with the 2× 2 case.

2. Two Real Eigenvalues

If we have two real eigenpairs with distinct eigenvectors:

(λ1, v̄1) and (λ2, v̄2) with λ1 6= λ2

So our two solutions are:
{x̄1, x̄2} =

{
eλ1tv̄1, e

λ2tv̄2
}

and they will form a fundamental set.

Example: The system

x̄′ =

[
3 2
2 3

]

x̄

has a matrix with eigenpairs
(

5,

[
1
1

])

and

(

1,

[
1

−1

])

Therefore we have two solutions

{x̄1, x̄2} =

{

e3t
[

1
1

]

, et
[

1
−1

]}

So the general solution is:

x̄ = C1e
5t

[
1
1

]

+ C2e
t

[
1

−1

]



3. One Real Eigenvalue

If we have just one eigenpair (λ, v̄) with multiplicity 2 then the situation is trickier. This eigenpair
will give us one solution

x̄1 = v̄eλt

It turns out that a second solution can be obtained by choosing w̄ to be a nonzero multiple of v̄
and then assigning:

x̄2 = eλt (w̄ + t (A− λI) w̄)

The proof of why this works is not at all obvious.

So our two solutions are:

{x̄1, x̄2} =
{
eλtv̄, eλt (w̄ + t (A− λI) w̄)

}

Example:

x̄′ =

[
4 −1
1 2

]

x̄

has matrix with eigenpair:
(

3,

[
1
1

])

This gives us one solution

x̄1 = e3t
[

1
1

]

To find another choose w̄ to be any non-multiple of v̄ =

[
1
1

]

, for example w̄ =

[
1
0

]

.

Then a second solution is:

x2 = eλt (w̄ + t (A− λI) w̄)

= e3t
([

1
0

]

+ t

[
1 −1
1 −1

] [
1
0

])

= e3t
([

1
0

]

+ t

[
1
1

])

= e3t
[

1 + t

t

]

So the general solution is

x̄ = C1e
3t

[
1
1

]

+ C2e
3t

[
1 + t

t

]



4. Two Complex Conjugate Eigenvalues

If we have two complex conjugate eigenpairs then we do get two solutions but they are not real
solutions. We’ve seen this issue before.

To understand the method we will work through an example the long way and then point out
that there’s a short method. Then we will work through another example with the short method.

Example:

x̄′ =

[
3 2

−2 3

]

x̄

has matrix with eigenpairs
(

3 + 2i,

[
1
i

])

and

(

3− 2i,

[
1

−i

])

Long Way: The first gives us the solution:

x̄ = e(3+2i)t

[
1
i

]

= e3t (cos (2t) + i sin (2t))

[
1
i

]

= e3t
[

cos (2t) + i sin (2t)
i cos (2t)− sin (2t)

]

= e3t
[

cos (2t) + i sin (2t)
− sin (2t) + i cos (2t)

]

1©

The second gives us the solution:

x̄ = e(3−2i)t

[
1

−i

]

= e3t (cos (−2t) + i sin (−2t))

[
1

−i

]

=
(
e3t cos (2t)− ie3t sin (2t)

)
[

1
−i

]

= e3t
[

cos (2t)− i sin (2t)
−i cos (2t)− sin (2t)

]

= e3t
[

cos (2t)− i sin (2t)
− sin (2t)− i cos (2t)

]

2©

Since linear combinations of solutions are solutions if we take half of the sum of these
we get the solution:

x̄1 =
1

2

[

1©+ 2©
]

= e3t
[

cos (2t)
− sin (2t)

]

and if we take 1
2i times the difference we get the solution:

x̄1 =
1

2i

[

1©− 2©
]

= e3t
[

sin (2t)
cos (2t)

]



Short Way: If we look back at 1© and break it into real and imaginary parts
then the two solutions can be extracted from the real and imaginary parts:

x̄ = e3t
[

cos (2t) + i sin (2t)
− sin (2t) + i cos (2t)

]

= e3t
[

cos (2t)
− sin (2t)

]

︸ ︷︷ ︸

x̄1

+ i e3t
[

sin (2t)
cos (2t)

]

︸ ︷︷ ︸

x̄2

So the general solution is:

x̄ = C1e
3t

[
cos (2t)

− sin (2t)

]

+ C2e
3t

[
sin (2t)
cos (2t)

]

We can see now that the short method would be to take one eigenpair:

(r + si, v̄)

Use this to calculate 1© and extract the real and imaginary parts. But where did 1©
come from? It came from doing the calculation:

ert (cos (st) + i sin (st)) v̄

So the key is to do this calculation and extract the real and imaginary parts and
those will be x̄1 and x̄2.



Example:

x̄′ =

[
2 1

−5 2

]

x̄

has matrix with eigenpairs
(

2 + i
√
5,

[

i
√
5

−5

])

and

(

2− i
√
5,

[

−i
√
5

−5

])

We then calculate:

e2t
(

cos
(√

5t
)

+ i sin
(√

5t
))[

i
√
5

−5

]

= e2t
[
−
√
5 sin

(√
5t
)
+ i

√
5 cos

(√
5t
)

−5 cos
(√

5t
)
− 5i sin

(√
5t
)

]

From here we extract the real and imaginary parts:

x̄1 = e2t
[
−
√
5 sin

(√
5t
)

−5 cos
(√

5t
)

]

x̄2 = e2t
[
−
√
5 cos

(√
5t
)

−5 sin
(√

5t
)

]

So the general solution is

x̄ = C1e
2t

[
−
√
5 sin

(√
5t
)

−5 cos
(√

5t
)

]

+ C2e
2t

[
−
√
5 cos

(√
5t
)

−5 sin
(√

5t
)

]

Note: Other valid answers can look quite different from this since any
multiple of an eigenvector is an eigevector and since complex multiples can
look quite surprising.



5. An Initial Value Problem: Since we haven’t done one from start to finish, here
is an initial value problem:

Example: Solve

x̄′ =

[
5 −1
3 1

]

with x̄ (0) =

[
2
3

]

(a) Find the eigenvalues:

p (z) = det

[
z − 5 −1

3 z − 1

]

= (z − 5) (z − 1)− (−1) (3)

= z2 − 6z + 8 = (z − 2) (z − 4)

So the eigenvalues are λ1 = 2 and λ2 = 4.

(b) Find the eigenvectors:

For λ1 = 2 choose a nonzero column of A − λ2I =

[
1 −1
3 −3

]

so

v̄1 =

[
1
3

]

.

For λ2 = 4 choose a nonzero column of A − λ1I =

[
3 −1
3 −1

]

so

v̄1 =

[
1
1

]

.

(c) Write down the general solution:

We have

x̄ = C1e
2t

[
1
3

]

+ C2e
4t

[
1
1

]

(d) Plug in the initial value and solve:

x̄ (0) = C1

[
1
3

]

+ C2

[
1
1

]

=

[
1 1
3 1

]

c̄ =

[
2
3

]

so that:

c̄ =

[
1 1
3 1

]
−1 [

2
3

]

=
1

−2

[
1 −1

−3 1

] [
2
3

]

= −1

2

[
−1
−3

]

=

[
1/2
3/2

]

(e) Write down the answer:

x̄ =
1

2
e2t

[
1
3

]

+
3

2
e4t

[
1
1

]


