
MATH 246: Chapter 0 Section 0: Course Introduction and Overview

Justin Wyss-Gallifent

Main Topics:

• What is a differential equation and what does it mean to solve one?

• Ordinary vs. Partial DEs.

• Order of a DE.

• Linear vs. Nonlinear DEs.

• A system of DEs.

1. What is a differential equation and what does it mean to solve one?

(a) The most straightforward definition of a differential equation (a DE) is that it’s an equa-
tion involving some or all of the following: An unknown function of one or more variables
such as y(t), derivatives of that function such as y′, y′′, and so on, and other functions of
the same variable(s) such as sin(t) and t2.

Example: f ′(t) + f(t) = 10 in which f is our unknown function of t.
Example: y′′ + 3y′ − xy = 6 in which y is our unknown function of x.
Example: t2f ′′(t) = 5− f ′(t)(sin t) in which f is our unknown function of t.

Example: 17 dy

dx
− x d2y

dx2 = xy in which y is our unknown function of x.
Example: ∂xu + sin(x)∂yu = y3∂xyu in which u is our unknown function of both x

and y.

(b) Solving a DE means finding a function which makes the DE true when you plug that
function in.

Example: f(t) = et is a solution to the DE f(t)− f ′(t) = 0.
Example: y(t) = sin(t) is a solution to the DE y + y′′ = 0.
Example: f(t) = t+ e2t is a solution to the DE f ′′(t) + 4t = 4f(t).
Example: f(x) = x2 is not a solution to the DE xf ′(x) = f(x).

Just as regular equations can have more than one solution (x2 − 9 = 0 has two solutions)
so can a DE. In fact usually a DE will have infinitely many solutions.

Example: f(t) = 487et is another solution to the DE f(t) − f ′(t) = 0. You can
probably see lots more now.

2. Associated definitions

(a) A DE is called ordinary (so an ODE) if the unknown function is just a function of one
variable. Otherwise it’s partial (so a PDE). Generally in this course when we talk about
a DE we mean an ODE.

Example: f ′(t) + 3tf ′′(t) = et is an ODE.
Example: ux(x, y) + uyx(x, y) + y = 3 is a PDE. If you’ve not seen partial derivatives
beore don’t worry.

(b) The order of a DE is the highest derivative that appears in it. We say things like first-

order and second-order and so on.

Example: x7f ′(x) + (cosx)f(x) + x = ex is first-order.
Example: tf(t) + etf ′′(t) = 1− f ′(t) is second-order.



(c) A DE is linear if it can be written as a sum of some or all of:

i. An unknown f multiplied by a coefficient.

ii. Derivatives of the unknown f multiplied by coefficients.

iii. Coefficients.

By coefficients we mean they can be other functions of the same variables that f is,
including just constants, including 0.

Example: The DE 5tf(t) + (ln t)f ′(t) = 5 is linear.
Example: The DE (tan t)y(t)− t3y′(t) + 7y′′(t) = 1 is linear.
Example: The DE f(x)

√
x+ (1− x)f ′′′(x) = f ′(x) is linear.

Example: The DE f(t)2 + f ′(t) = 7 is nonlinear because the f(t)2 is not permitted.
Example: The DE sin(y′)+y′−y = x is nonlinear because the sin(y′) is not permitted.
Example: The DE y′y + y = xy is nonlinear because the y′y is not permitted.

Clarification perhaps:

A first-order linear differential equation using the variable t and the unknown function y

will have the form
a1(t)y

′ + a0(t)y = c(t)

A second-order linear differential equation with the function y(t) will have the form:

a2(t)y
′′ + a1(t)y

′ + a0(t)y = c(t)

An nth order linear DE with the function y(t) will have the form:

an(t)y
(n) + an−1(t)y

(n−1) + ...+ a1(t)y
′ + a0(t)y = c(t)

(d) A system of DEs is just that, a collection of more than one DE where the goal is to find
a single function that makes them all true. The order of such a system is the highest
derivative that appears in any of the DEs.

Example: A first-order system of two linear DEs:

ty + t2y′ = et

3y + 5y′ = sin(t)

3. Moving onwards.

At this point you can probably start to wrap your head around which DEs looks like they might
be easier to handle. The following is a list of DEs of increasing complexity. Even though you
don’t really know how to solve any of these just yet (that’s not true, you can do the first one!)
you can almost certainly look at them in order and get an apprection for the fact that they
start pretty nice and get more convoluted! Don’t worry that some of the words on the right
might not make sense.

y′ = t2 Explicit first order linear ODE
5y′ − 4y = 0 Homogeneous first order linear ODE with constant coefficients
2y′′ + 5y′ − 4y = 0 Homogeneous second order linear ODE with constant coefficients
7y′ − 2y = t Nonhomogeneous first order linear ODE with constant coefficients
t2y′ + ety = 1 + t Nonhomogeneous first order linear ODE

With some quirky exceptions our approach will pretty much be like that in that we’ll first
tackle the easier types. This will help us develop some theory which will then support us as
we move to the more complicated types, and then to systems of these.
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Main Topics:

• Overview of first-order (O)DEs.

• Explicit first-order DEs.

• General solutions, initial value problems, specific (particular) solutions.

• Underlying theory regarding existence of solutions on an interval.

1. Introductory overview of first-order ODEs.

(a) A first-order ODE (not necessarily linear) is permitted to have an unknown function y

(of a single variable, say t) its derivative y′ and then some other functions of t.

Example: t(y′)2 + y = sin t
Example: y′ − ty = e2t

Example: sin(y′) + ey
′

= t

(b) In general these can be very hard! The first step is always algebra though, basically we
first solve for y′ and then proceed from there. Thus for the next few sections we’ll assume
that we’ve solved for y′ in terms of t and y and we’ll focus on DEs that have the form
y′ = f(t, y).

That f might be confusing, it’s not the unknown function but rather it just represents
the fact that we can have a bunch of y and t on the right hand side. In other words things
like this:

Example: y′ = ty

Example: y′ = 4t− 8y
Example: y′ = y

t
.

2. Explicit first-order DEs.

(a) Because solving even first-order ODEs is hard we’ll go down even further and look at
explicit first-order ODEs that have the form y′ = f(t).

Example: y′ = t2.
Example: y′ = 4t+ sin t.

(b) At this point you might have an epiphany and realize that often you can solve these
because solving these is as easy as integrating the right side.

Example: y′ = t2. To solve this we integrate to get y = 1
3 t

2 + C for any constant C.
Example: y′ = 4t+ sin t. To solve this we integrate to get y = 2t2 − cos t+ C for any
constant C.

3. General solutions, initial value problems, specific (particular) solutions

(a) We’ve started to notice that we can have many solutions to a DE. In the explicit DEs
above get a constant C which can be anything.

(b) A general solution to a DE is a solution involving constants and for which different
constants will give all solutions.



(c) A specific solution or a particular solution is a solution in which a specific (particular)
choice of constant(s) has been made.

Example: The general solution to y′ = t2 is y = 1
3 t

3 + C. Some specific solutions are
y = 1

3 t+ 1, y = 1
3 t− 107 and y = 1

3 t+ π.

(d) Often when we encounter a DE it comes pre-packaged with an initial value, or IV. In our
simple exact case (and in many future cases) this will be an insistance that y(tI) = yI
for specific tI and yI . The DE and the IV together form an initial value problem or IVP.
It’s very common that tI = 0 but this isn’t always the case!

Example: y′ = 2t with y(0) = 3 is an IVP.
Example: y′ = 2t with y(0) = 5 is an IVP with the same DE but different IV.
Example: y′ = 2t with y(1) = 3 is an IVP with again the same DE but different IV.

(e) When we’re given an IVP the idea will be to first solve the DE to get the general solution
and then use the IV to get the specific solution.

Example: y′ = 2t with y(0) = 3. First we find y = t2 + C, the general solution, and
then y(0) = 02 + C = 3 so C = 3 and the specific solution is y = t2 + 3.
Example: y′ = 2t with y(1) = 3. First we find y = t2 + C, the general solution, and
then y(1) = 12 + C = 3 so C = 2 and the specific solution is y = t2 + 2.

4. Intervals of Existence and Theory for Explicit IVPs:

We now know that solving the explicit DE given by y′ = f(t) is as easy (or hard) as finding
an antiderivative for f(t). However the Fundamental Theorem of Calculus tells us something
interesting. It states that if a function is continuous on an open interval then it is has an
antiderivative on that open interval. This means that even if we can’t actually find the an-
tiderivative of f(t) using techniques that we know, we still know that it exists, and therefore
that there is a solution on an open interval as long as f(t) is continuous on that open interval.

Example: Consider the explicit DE given by y′ = t. Since the function t is continuous
on (−∞,∞) we know it has an antiderivative on (−∞,∞) and therefore the DE has a
solution there. In this case the general solution is y = 1

2 t
2 + C.

Example: Consider the explicit DE given by y′ = 1
t2
. The function 1

t
is continuous

on (−∞, 0) and on (0,∞). What this means is that it has solutions on each of those
intervals.

When it comes to an explicit IVP we start with y = f(t) and y(tI) = yI . We say that the
interval of existence is the largest open interval containing tI on which a solution exists. This
is found by find the largest open interval containing tI on which f(t) is continuous.

Example: y′ = 1
t2

with y(1) = 5. We notice the largest open interval containing tI = 1
on which 1

t2
is defined is (0,∞) and so this is the IE. Notice that we don’t need to solve

it, but we could, since the general solution is y = −
1
t
+C and then y(1) = −1 +C = 5

so C = 4 and the specific solution is y = −
1
t
+ 4.

Example: y′ = t
(t−3)(t+6) with t(0) = 17. We notice the largest open interval containing

tI = 0 on which t
(t−3)(t+6) is defined is (−6, 3) so this is the IE. We could possibly solve

this with some messy partial fractions but we won’t. However we do know for sure that
there is a solution on this interval.



MATH 246: Chapter 1 Section 2: Linear First-Order DEs

Justin Wyss-Gallifent

Main Topics:

• Linear First-Order DEs and Linear Normal Form.

• General approach.

• Initial Value Problems.

• Theory

1. Linear first-order ODEs.

Recall that these will all have the form a1(t)y
′ + a0(t)y = c(t) where a1, a0, c can be any

functions of t.

Example: 4y′ + 5y = 0
Example: 4ty′ + ety = sin t

2. Linear Normal Form.

(a) Introduction:

We will usually divide through by a1(t) and re-label a bit to get what is known as the
linear normal form:

y′ + a(t)y = f(t) for functions a(t) and f(t)

(b) General Solution.

These we can actually handle, and most of you did in Calculus II though it may be rusty.

Method: If we let A(t) be an antiderivative (any antiderivative, meaning use +0 for the
constant) of a(t) so that A′(t) = a(t) then observe:

y′ + a(t)y = f(t)

eA(t)y′ + eA(t)a(t)y = f(t)eA(t)

d

dt

(

eA(t)y
)

= f(t)eA(t)

eA(t)y =

∫

f(t)eA(t) dt

y = e−A(t)

∫

f(t)eA(t) dt

The only step that might concern you here is from line 2 to line 3. This is just the reverse
of the product rule with a bit of chain rule thrown in. Reading it from line 3 to line 2
might be easier. We’ll see this sort of thing happen again with exact DEs later.

This process can either be repeated for each problem or treated simply as a recipe,
meaning find A(t) and then use the formula at the end of the calculation.

Be careful though, the e−A(t) is multiplied by the entire integral, meaning the +C too
when you integrate.

We’ll call this final expression the integral-form solution:

y = e−A(t)

∫

f(t)eA(t) dt



Example: Consider y′ + 5y = 2. We see that a(t) = 5 so A(t) = 5t and the solution is

y = e−5t

∫

2e5t dt

= e−5t

(

2

5
e5t + C

)

← Note the parentheses!!!

=
2

5
+ Ce−5t

If you’d have forgotten the parentheses you’d have got an incorrect answer which I won’t
even write here!

Example: Consider ty′ + 2y = t4 with t > 0. This is not in linear normal form so we
divide by t to get y′ + 2

t
y = t3. Then a(t) = 2

t
so A(t) = 2 ln t and the solution is

y = e−2 ln t

∫

t3e2 ln t dt

y = e−2 ln t

∫

t3e2 ln t dt

= t−2

∫

t5 dt

= t−2

(

1

6
t6 + C

)

=
1

6
t4 +

C

t2

Here’s one with an IVP:

Example: Consider y′ − 6y = et with y(0) = 2. We see that a(t) = −6 so A(t) = −6t
and the general solution is

y = e−(−6t)

∫

ete−6t dt

= e6t
∫

e−5t dt

= e6t
(

−

1

5
e−5t + C

)

= −
1

5
et + Ce6t

At this point y(0) = − 1
5e

0 +Ce0 = − 1
5 +C = 2 so that C = 11

5 so the specific solution
is

y = −
1

5
et +

11

5
e6t

At this point you can probably see that solving a first-order linear ODE is as easy (or as
hard) as first finding A(t) and then finding

∫

f(t)eA(t) dt.



(c) Note about the choice of A(t). You might wonder what happened if you didn’t choose
+0 as your constant when choosing A(t). In fact it makes no difference. Suppose we took
A(t) and adjusted it by adding some number like +7. The solution would then be:

y = e−(A(t)+7)

∫

f(t)eA(t)+7 dt = e−7e−A(t)

∫

f(t)e7eA(t) dt = e−A(t)

∫

f(t)eA(t) dt

which is exactly the same.

3. Theory!

The Second Fundamental Theorem of Calculus states that if a function is continuous on an
open interval then it has an antiderivative on that interval and that antiderivative will be
continuous. What this means is that if a(t) is continuous then A(t) will exist and therefore so
will e−A(t) and then provided that f(t) is continuous then so will

∫

f(t)eA(t) dt.

Warning! This doesn’t mean that these things are easy to calculate, just that they exist!

What this means is that if we have an initial value y(tI) = yI then the interval of existence
of the solution will be the largest open interval containing tI on which both f(t) and a(t) are
continouous. As before this lets us find the IE even when we can’t solve the IVP.

Example: Consider y′ + 1
t2
y = 1

t−5 with y(2) = 17. Here a(t) = 1
t2

and f(t) = 1
t−5 .

The largest open interval containing tI = 2 on which both are continuous is (0, 5) so
this is the IE of the solution. Finding the solution is a different matter entirely but it
exists on (0, 5)!

4. Integration Comment.

As a final note observe that there are two antiderivatives involved in the problem, finding A(t)
and finding

∫

f(t)eA(t) dt. This latter one will often involve simplification involving e and ln
as well as substitution and integration by parts.
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Main Topics:

• Separable DE and Method of Solution.

• Implicit vs. Explicit Solutions.

• Constant Solutions.

• Autonomous DEs.

• Effect of Initial Values on Solution Choice.

• Non-uniqueness of Solutions.

• Method Notation Note.

1. Separable ODEs.

A DE is separable if it can be written in the form y′ = f(t)g(y). The word separable comes
from the fact that the right side is separated into a product of a function of t and a function
of y.

Example: y′ = ty is separable - it is already separated!
Example: ty′ + y′ = y2 is separable because it can be separated, first by factoring

y′(t+ 1) = y2 and then dividing y′ = y2

t+1 and thinking of it as y′ =
(

1
t+1

)

y2.

Example: y′ = t + y is not separable. There is no way to write the right side as a
product of a function of t and a function of y.

2. Method: Solving for Non-Constant Solutions.

The method of solution for non-constant solutions is really slick:

y′ = f(t)g(y)

dy

dt
= f(t)g(y)

1

g(y)
dy = f(t)dt

∫

1

g(y)
dy =

∫

f(t)dt

Where the integral on the left is with respect to y and the integral on the right is with respect
to t. Since both indefinite integrals should get their own constant, instead we just put a single
+C on the right.

The 1
g(y) looks really icky to integrate but in our examples it generally works out pretty nicely

because it’s often not a quotient at all.

Side note: We’re really taking a stick and beating the notation into a pulp here. If this weird
approach bothers you I’ve attached a note at the end explaining why it’s simply a shorthand
notation for something more rigorous.



Example: Consider y′ = t
y2 .

Note that you could think of this as y′ = t
(

1
y2

)

. The key is to get all the ys together

multiplied by the y′ on the left and leave all the ts together on the right. We work as
follows, multiplying by y2 first, or if you prefer to think of it that way, dividing by 1/y2:

y′ =
t

y2

y2
dy

dt
= t

y2 dy = t dt
∫

y2 dy =

∫

t dt

1

3
y3 =

1

2
t2 + C

y =
3

√

3

2
t2 + 3C

There’s an argument to be made at this point that since 3C is just a constant we could
write C instead. However this results in a problem having two different Cs meaning
two different things and given that we will often solve for this C it’s far safer to just
leave it as is.

3. Observation: Constant Solutions:

When we solve a separable DE we do often actually divide by some g(y) and in that case
we have to independently look at the possiblity that g(y) = 0. This may lead to constant
functions which are additional solutions to the separable DE.

Example: Consider y′ = et
√

1− y2.
The method of solution above goes as follows:

dy

dx
= et

√

1− y2

1
√

1− y2
dy = et dt

∫

1
√

1− y2
dy =

∫

et dt

sin−1 y = et + C

y = sin
(

et + C
)

There is nothing wrong with this provided
√

1− y2 6= 0. So what if
√

1− y2 = 0? This
would arise if y = ±1 and in fact these are completely valid solutions (functions!) to the
DE. Thus overall the DE has two constant solutions as well as the nonconstant solutions!

All Solution: y = −1, y = 1, y = sin (et + C)

Conclusion: When we divide by some g(y) the functions arising from when g(y) = 0 are valid
constant solutions to the DE and must be included in our final list.



4. Implicit versus Explicit Solutions:

It’s entirely possible that when we solve a separable DE we are unable to solve for y at the
end, or it may be very difficult.

Example: Consider y′ = t
ey+1 .

Notice there are no constant solutions here because to solve it we do not divide by
something which can be zero.
We work as follows:

dy

dt
=

t

ey + 1

(ey + 1)dy = tdt
∫

ey + 1 dy =

∫

t dt

ey + y =
1

2
t2 + C

In this case it’s reasonable to stop here and say that we have implicitly defined the solutions
An implicit solution is a solution in which we have not actually achieved y =.

Ideally of course we would be able to solve for y, this would yield an explicit solution.

5. Autonomous ODEs:

There is a special kind of separable ODE called autonomous. This occurs when f(t) = 1 and
so instead we have y′ = g(y). This can be solved like any other separable ODE. We only
mention it because these will arise repeatedly over the course in various places.

Example: Consider y′ = (y − 4)2.
Here g(y) = (y − 4)2 which equals 0 when y = 4 so this is the constant solution. The
nonconstant solutions we obtain as follows:

dy

dt
= (y − 4)2

(y − 4)−2 dy = 1 dt
∫

(y − 4)−2 dy =

∫

1 dt

−(y − 4)−1 = t+ C

(y − 4)−1 = −(t+ C)

(y − 4) =
−1

t+ C

y =
−1

t+ C
+ 4



6. Two Small Initial Value Notes:

(a) Choosing Solutions:

When we solve a separable ODE and get an implicit solution for which there seems to be
more than one explicit solution, an initial value usually tells us which one it is:

Example: Consider y′ = t
y with y(1) = −3.

First we solve the DE:

dy

dt
=

t

y

y dy = t dt
∫

y dy =

∫

t dt

1

2
y2 =

1

2
t2 + C

y2 = t2 + 2C

y = ±
√

t2 + 2C

We see that there are two explicit solutions to the DE.

When we consider the initial value we have y(1) = ±
√
12 + 2C = −3 so we are

forced to use the negative in front of the square root. Thus −
√
12 + 2C = −3 so

1 + 2C = 9 and C = 4. Then the explicit solution is y = −
√
t2 + 8.

Note: There are no constant solutions here since g(y) = 1
y is never 0.

(b) Uniqueness (?) of Solutions:

The existence of constant solutions often leads to non-unique solutions to IVPs. This can
happen when a constant solution satisfies the DE but also the procedural method gives
another solution. The way to manage this is to not forget to find your constant solutions
and check if they satisfy the IV.

Example: Consider y′ = y2/3 with y(0) = 0. Notice that y = 0 is a constant solution
which also satisfies the DE. However the DE is separable:

dy

dt
= y2/3

y−2/3 dy = 1 dt
∫

y−2/3 dy =

∫

1 dt

3y1/3 = t+ C

y =

(

1

3
t+

1

3
C

)3

Then y(0) =
(

1
3C

)3
= 0 so C = 0. This gives the additional solution y =

(

1
3 t
)3

= 1
27 t

3.

7. Overlap

At this juncture it might be helpful to notice that an ODE doesn’t need to be just one of the
categories we’ve looked at - explicit, first-order linear, and separable - it could fall into more
than one category.

Example: y′ = ty is both separable and first-order linear.
Example: y′ = t2 is all of explicit, separable and first-order linear.



8. Justification for the strange approach.

It may bother you that we can rip apart the DE like we do and simply stick an integral sign
on both sides. Really this is just shorthand notation for a more rigorous approach. More
rigorously once our DE is rewritten as:

G(y(t))y′(t) = f(t)

Since they are equal we can integrate bot sides with respect to t:

∫

G(y(t))y′(t) dt =

∫

f(t) dt

On the left we make the substitution u = y(t) which yields du
dt = y′(t) which we then substitute

in:
∫

G(u)
du

dt
dt =

∫

f(t) dt

This then simplifies to:
∫

G(u) du =

∫

f(t) dt
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Main Topics:

• Quantitative versus Qualitative Solutions.

• Phase-Line Portraits and Sketching Autonomous Systems.

• Contour Plots for Implicit Solutions.

• Slope Fields.

1. Introduction:

The overarching goal of this section is to find things out about solutions to DEs without
actually solving them explicitly. Instead we attack them graphically.

2. Phase Line Portraits for Autonomous Differential Equations.

(a) Introductory Example.

Consider the autonomous DE y′ = y(y−3). This has constant solutions y = 0 and y = 3.
But what about other solutions? Well the DE tells us that if we know y then we know
y′. A sign chart giving information about y′ can give us a wealth of information:

y

0 3y′ + − +

y inc y dec y inc

Consider now that:

• A solution below y = 0 will be increasing. Moreover for larger positive t-values it will
get closer to y = 0 where it will level off and for larger negative t-values it will get
closer to ∞.

• A solution between y = 0 and y = 3 will be decreasing. Moreover for larger positive
t-values it will get closer to y = 0 where it will level off and for larger negative t-values
it will get closer to y = 3 where it will level off.

• A solution above y = 3 will be increasing. Morevoer for larger positive t-values it
will get closer to ∞ and for larger negative t-values it will get closer to y = 3 where
it will level off.

Basically all possible solutions will look like these:

−10 −5 0 5 10
−2

0

2

4



(b) General Understanding:

An autonomous DE will generally have constant solutions. Between the constant solutions
is where interesting things happen. To see what’s going on between the constant solutions
draw a number line which gives information about whether solutions are increasing or
decreasing.

This number line is the phase line portrait of the autonomous differential equation.

Solutions approaching constant solutions will do so asymptotically. This is true both for
larger positive t-values and larger negative t-values.

Moreover this gives some information about those constant solutions:

i. If nearby solutions move away from the constant solution on both sides then the
constant solution is unstable.

ii. If nearby solutions move toward the constant solution on both sides then the constant
solution is stable.

iii. If there is different behavior on each side then the constant solution is semistable.

Example: Consider y′ = y(y − 3)(y + 2)2. This has the following sign chart:

y

−2 0 3y′ + − + +

y inc y dec y inc y inc

Basically all possible solutions will look like these:

−10 −5 0 5 10

−4

−2

0

2

4

From these families of solutions we can draw all sorts of conclusions:

• The constant solution y = −2 is stable, the constant solution y = 0 is unstable, and
the constant solution y = 3 is semistable.

• The particular solution y(t) satisfying y(0) = α has lim
t→∞

y(t) = 2 when −∞ < α < 0.

• The particular solution y(t) satisfying y(0) = α is decreasing when −2 < α < 0.

• y = −2 is stable.

• y = 0 is unstable.

• y = 3 is semistable.



3. Contour Plots of Implicit Solutions

(a) When we solve a separable DE we often get an implicit solution with a C in it. This
implicit solution is an equation. If we pick various values of C and plot the resulting
equations we get a contour plot.

What’s useful about these contour plots is that the parts of the curves that form functions
are explicit solutions to the DE because they’re functions (y in terms of t) that satisfy
the implicit solution. This means that we can pick a point on a curve and follow it as far
left and right as possible and the result is the graph of an explicit solution to the DE.

Example: Consider dy
dx = 1

2y−6 . This is separable with general solution y2− 6y = x+C.
This is not as bad as it looks:

y2 − 6y = x+ C

y2 − 6y + 9 = x+ C + 9

(y − 3)2 = x+ C + 9

These are all parabolas opening right with their vertices at y = 3. If we sketch a few of
these (note that they extend out forever, this is just a subset):

−10 −5 0 5 10
−10

−5

0

5

10



Solutions to the DE are functions (must pass the vertical line test!) which lie along these
parabolic curves. For example the specific solution satisfying y(0) = 0 corresponds to
C = 0 and looks like this:

−10 −5 0 5 10
−10

−5

0

5

10

From this contour plot we can draw all sorts of conclusions:

• Solutions extend infinitely far to the right but not the left.

• Solutions are either increasing or decreasing but not both.

• The specific solution y(t) with y(0) = 0 is a decreasing function with lim
t→∞

y(t) = −∞.

• The specific solution with y(0) = 5 is an increasing function.

• Solutions are either always increasing or always decreasing.



4. Direction (Slope) Fields

(a) As a last-ditch effort any dy
dt = f(t, y) (any first-order) is essentially telling us the slope of

a solution at a point. Consequently we can plug in lots of t and y and indicate what the
slope would be of a solution passing through that point. The result is a direction field or
slope field. Then we can trace functions which follow the field and draw conclusions.

(b) Example: Here is the direction field for dy
dt = t− y2, a hard DE to solve:

−2 0 2

−2

0

2



Solutions to the DE are functions (must pass the vertical line test!) which follow these
arrows. For example the specific solution satisfying y(−1) = 0 looks like this:

−2 0 2

−2

0

2

From this direction field we can draw all sorts of conclusions:

• The specific solution satisfying y(−1) = 0 has a relative minimum approximately
(0,−0.5).

• We can observe categories, for example not all solutions have relative mimima.

Note however that we’re somewhat restricted by the range we drew!



MATH 246: Chapter 1 Section 6: Applications

Justin Wyss-Gallifent

Main Topics:

• Population Dynamics.

• Water Tanks.

• Motion.

1. Population dynamics:

(a) Introduction: In precalculus you probably learned that if a population grows at rate 5%
then it obeys the formula

P = Ae0.05t

But why? The answer is that to say “a population grows at rate of 5%” means that
the instantaneous change in population at any time equals 5% of the actual population,
meaning:

p′ = 0.05p

This is a first order linear differential equation (it’s also separable). If we rewrite it as
p′ − 0.05p = 0 then a(t) = −0.05 so A(t) = −0.05t and the solution is:

p(t) = e−(−0.05t)

∫

0 dt = Ce0.05t

That’s why!

(b) General Approach: Our general formula will involve a population with a certain growth
rate R but in addition some new amount may arrive or depart every time period, maybe
by being introduced, removed, etc. So in general we have

p′ = Rp+ a(t)

Our rate will always be constant but the amount that are introduced or subtracted may
vary.

(c) Examples:

Example: A population of monkeys starts with 100. It has a growth rate of 4% per
year but an additional 8 monkeys join each year from a neighboring troop. Find the
number of monkeys after t years.
Solution: Here we have p′ = 0.04p+ 8 with p(0) = 100.
The solution (work ommitted) is p = 300e0.04t − 200.

Example: In a certain neighborhood there is a mosquito problem. The population
starts at 10M and has a growth rate of 20% monthly. Traps are put out and these traps
kill 3M monthly. Find the number of mosquitos after t months and determine when the
mosquitos will be wiped out.
Solution: Here we have p′ = 0.2p− 3 with p(0) = 10.
The solution (work ommited) is p = −5e0.2t + 15 and if we solve −5e0.2t + 15 = 0 we
get t = 5 ln(3) ≈ 5.49 months.



2. Tanks.

(a) Introduction: We have a tank that contains a saltwater mixture. As time goes by, salt-
water is being pumped in and out. Our goal is to know how much salt there is at any
time t.

(b) General Approach: If Q is the amount of salt at time t then we’ll have

Q′ = Rate In− Rate Out

The only confusing thing about these problems is we usually have to do some work with
quantities to figure out the rates.

(c) Examples:

Example: A tank initially contains 500L of saltwater with a concentration of 0.2kg/L.
Saltwater with a concentration of 0.3kg/L is being pumped in at 10L/min while the
tank is being emptied of the mixture at the same rate. Find the amount of salt in the
tank at time t.
Solution: We’re interested in the quantity of salt, not saltwater.

• Initially there is (500 L)(0.2 kg/L)=100 kg of salt so Q(0) = 100.

• Salt is entering at (10 L/min)(0.3 kg/L)=3 kg/min.

• Salt is leaving at (10 L/min)(Q kg/ 500 L)=0.02Q kg/min.
Note this is because at any instant there is y kg of salt in the tank and the tank
always has 500 L of mixture in it because the rate in equals the rate out.

Therefore we have Q′ = 3− 0.02Q with Q(0) = 100.
This is first-order linear rewritten as Q′ + 0.02Q = 3 so we set a(t) = 0.02 and so
A(t) = 0.02t and then the solution is:

Q = e−0.02t

∫

3e0.02t dt

= e−0.02t
[

150e0.02t + C
]

= 150 + Ce−0.02t

Then the initial value Q(0) = 100 gives us C = −50 and so the solution is Q =
150− 50e−0.2t.



Example: A 300 gal tank initially contains 200 gal of saltwater with a concentration
of 0.15 lb/gal. Saltwater with a concentration of 0.2 lb/gal is being pumped in at 6
gal/min while the tank is being emptied of the mixture at 4 gal/min. How much salt
will be in the tank when it is full?
Solution: Observe that the tank does not start out full but gains 2 gal/min, meaning
after time t it will have 200 + 2t gal in it. This will be important in the DE!
Again note:

• Intially there is (200 gal)(0.15 lb/gal)=30 gal of salt so Q(0) = 30.

• Salt is entering at (6 gal/min)(0.2 lb/gal)=1.2 lb/min.

• Salt is leaving at (4 gal/min)(Q lb / 200 + 2t gal) = 4Q
200+2t lb/min.

Note this is because at any instant there is y lb of salt in the tank and the tank has
200 + 2t gal in it.

Therefore we have Q′ = 1.2− 4Q
200+2t with Q(0) = 30.

This is first-order linear rewritten as:

Q′ +

[

2

100 + t

]

Q = 1.2

so we set a(t) = 2
100+t

and so A(t) = 2 ln(t+ 100) and then the solution is:

Q = e−2 ln(t+100)

∫

1.2e2 ln(t+100) dt

= eln(t+100)−2

∫

1.2eln(t+100)2 dt

= (t+ 100)−2

∫

1.2(t+ 100)2 dt

= (t+ 100)−2
[

0.4(t+ 100)3 + C
]

= 0.4(t+ 100) +
C

(t+ 100)2

Using the initial value Q(0) = 30:

30 = 0.4(100) +
C

1002

30 = 40 +
C

10000

−10 =
C

10000
C = −100000

and so the solution is:

Q = 0.4(t+ 100)−
100000

(t+ 100)2

The tank is full when 200 + 2t = 300 so t = 50. The amount of salt is then

Q(50) = 0.4(50 + 100)−
100000

(50 + 100)2



3. Motion:

(a) Introduction: In calculus you probably learned that a falling object with no air resistance
has

a(t) = −9.8

But why? The answer comes from equating two forces. if the object has acceleration a(t)
and mass m then the force on it is ma(t). The force from gravity is −9.8m. When we
equate these we get

ma(t) = −9.8m

and then we cancel the m.

(b) Adding some air: When we add air resistance there are now two forces. First there
is gravity pulling down and then drag (air resistance for example) pushing up. These
two forces combine to form the total force. We know the total force is ma(t) = mv′(t).
Therefore

ma(t) = force of gravity + drag force

The force of gravity is −9.8m. The drag force is harder, it’s mkv2 where k is the drag
coefficient. Thus we have

ma(t) = −9.8m+mkv2

or, cancelling the m again:
a(t) = −9.8 + kv2

Finally we replace a(t) by v′(t) to get:

dv

dt
= −9.8 + kv2

(c) General Approach: We’ll generally just use the IVP

dv
dt

= −9.8 + kv2 with v(0) = 0 (usually)

to find v at time t and answer questions from that. Things to note:

• v(0) might not be 0 if there is some initial velocity.

• In the Metric system k will be in m−1, mass will be in kg and 9.8 stays as-is.

• In the English system k will be in ft−1, mass will be in slugs and we use 32.2 (instead
of 9.8).

• Terminal velocity occurs when v′ = 0 so this is when v =
√

9.8
k
.

• If we know v then we can also find out distance travelled since v = h′ and so h(tE)−

h(tI) =
∫ tE

tI
v(t) dt

• We can certainly change from air to some other substance or from earth gravity to
some other standard. Information would have to be given.

•
∫

1
x2

−a2 dx = − 1
a
tanh−1 x

a
+ C

• tanh(z) = ex−e−x

ex+e−x = e2z+1
e2z−1

• tanh−1(z) = 1
2 ln

(

1+z
1−z

)

•
∫

tanh(z) = ln(cosh(z)) + C

• cosh(z) = ex+e−x

2



(d) Examples:

Example: A skydiver leaps out of a plane at 3000m. The drag coefficient is 0.002m−1.
What is the IVP here? What is her terminal velocity? Find her velocity at time t.
Solution: We have dv

dt
= −9.8 + 0.002v2 with v(0) = 0.

Her terminal velocity is v =
√

9.8
0.002 =

√
4900 = 70 m/s.

The solution to the IVP is shown here:

dv

dt
= −9.8 + 0.002v2

dv

dt
= 0.002(−4900 + v2)

1

v2 − 4900
dv = 0.002 dt

∫

1

v2 − 4900
dv =

∫

0.002 dt

−
1

70
tanh−1

( v

70

)

= 0.002t+ C

tanh−1
( v

70

)

= −0.14t+ C

v

70
= tanh(−0.14t+ C)

v

70
= tanh(−0.14t+ C)

v = 70 tanh(−0.14t+ C)

Then v(0) = 70 tanh(C) = 0 so C = tanh−1 0 = 0 and our final answer is

v = −70 tanh (0.14t)

At this point if we wish to know the height we can integrate:

h(t) =

∫

v(t) dt =

∫

−70 tanh(0.14t) dt = −
70

0.14
ln(cosh(0.14t)) + C

Then we can ue h(0) = 3000 to find C.



MATH 246: Chapter 1 Section 7: Approximation Methods

Justin Wyss-Gallifent

Main Topics:

• Euler’s Method (The Left-Sum Method).

• The Runge-Trapezoid Method.

• The Runge-Midpoint Method.

1. Euler’s Method

(a) Introduction Suppose we’re dealing with the IVP given by:

dy

dt
= t+ y with y(1) = 2

Suppose we’d really like to know y(2).

The DE tells us that at the point (1, 2) the slope of the solution is dy

dt
(1, 2) = 3. Of course

the solution is not a straight line, meaning if we move right 1 we won’t go up exactly 3, but
if things aren’t too bad then we would go up approximately 3. Thus we can conclude that
y(1 + 1) ≈ 2 + 3 or y(2) ≈ 5.

This approximately probably stinks, so what we can do instead is go to the right just 0.5
and up 0.5(3), then do the process again, now anchored at the new point. That is:

At (1, 2) the slope is dy

dt
(1, 2) = 3 so we go over 0.5 and up 0.5(3) and now we’re at (1 +

0.5, 2 + 0.5(3)) = (1.5, 3.5).

At (1.5, 3.5) the slope is dy

dt
(1.5, 3.5) = 5 so we go over 0.5 and up 0.5(5) and now we’re at

(1.5 + 0.5, 3.5 + 0.5(5)) = (2, 6)

Then we conclude y(2) ≈ 6. This approximation is probably better.



(b) Euler’s Method.

This process is known as Euler’s Method. We start with an IVP given by dy

dt
= f(t, y) with

y(t0) = y0. and we choose a small h. We did h = 1 and then h = 0.5. We then proceed as
follows:

(t1, y1) = (t0 + h, y0 + hf(t0, y0))

(t2, y2) = (t1 + h, y1 + hf(t1, y1))

Or, more generally:

Euler’s Method

ti = ti−1 + h

yi ≈ yi−1 + hf(ti−1, yi−1)

Example: Again with dy

dt
= t+ y with y(1) = 2. Let’s approximate y(2) using n = 10 steps

of size h = 0.1.

This can all be put more nicely into a table as follows:

0 1 2 y(1)=2
i ti yi ≈ yi−1 + hf(ti−1, yi−1) So
1 1 + 0.1 = 1.1 2 + 0.3 = 2.3 y(1.1) ≈ 2.3
2 1.1 + 0.1 = 1.2 2.3 + 0.34 = 2.64 y(1.2) ≈ 2.64
3 1.2 + 0.1 = 1.3 2.64 + 0.384 = 3.024 y(1.3) ≈ 3.024
4 1.3 + 0.1 = 1.4 3.024 + 0.4324 = 3.4564 y(1.4) ≈ 3.4564
5 1.4 + 0.1 = 1.5 3.4564 + 0.48564 = 3.94204 y(1.5) ≈ 3.94204
6 1.5 + 0.1 = 1.6 3.94204 + 0.544204 = 4.48624 y(1.6) ≈ 4.48624
7 1.6 + 0.1 = 1.7 4.48624 + 0.608624 = 5.09487 y(1.7) ≈ 5.09487
8 1.7 + 0.1 = 1.8 5.09487 + 0.679487 = 5.77436 y(1.8) ≈ 5.77436
9 1.8 + 0.1 = 1.9 5.77436 + 0.757436 = 6.53179 y(1.9) ≈ 6.53179
10 1.9 + 0.1 = 2 6.53179 + 0.843179 = 7.37497 y(2) ≈ 7.37497

Of course the further we go the less accurate we get but if the DE is not so bad then maybe
we’re good. The solution to the above DE (first-order linear) is y(t) = 4et−1

− t − 1 and
so y(2) = 4e − 2 − 1 ≈ 7.8731273138361809414411498854106 so our approximation is not
terrible.

Example: Same IVP but we could to better by reducing h and increasing the number of
steps. Just for fun, compare to 1000 steps of size h = 0.001 each and see how close the
approximation is at the end!

Note: This was generated in Python and some approximation and truncation is taking place.

0 1 2 y(1)=2
i ti yi ≈ yi−1 + hf(ti−1, yi−1) So
1 1 + 0.001 = 1.001 2 + 0.003 = 2.003 y(1.001) ≈ 2.003
2 1.001 + 0.001 = 1.002 2.003 + 0.003004 = 2.006 y(1.002) ≈ 2.006
3 1.002 + 0.001 = 1.003 2.006 + 0.003008 = 2.00901 y(1.003) ≈ 2.00901
... ... ... ...
998 1.997 + 0.001 = 1.998 7.83816 + 0.00983516 = 7.84799 y(1.998) ≈ 7.84799
999 1.998 + 0.001 = 1.999 7.84799 + 0.00984599 = 7.85784 y(1.999) ≈ 7.85784
1000 1.999 + 0.001 = 2 7.85784 + 0.00985684 = 7.8677 y(2) ≈ 7.8677



2. Improving:

First off recall that for a continuous function y(t) the Fundamental Theorem of Calculus tells us
that:

∫ b

a

[
dy

dt

]

dt = y(b)− y(a)

With our differential equation given that we’re looking for some y(t) satisfying dy

dt
= f(t, y(t))

this translates to:
∫ b

a

f(t, y(t)) dt = y(b)− y(a)

Given that we started this whole process knowing y0 and wanting y1 we can write:

y(t1)− y(t0) =

∫ t1

t0

f(t, y(t)) dt

which can then be rewritten as our Basic Formula:

y1 = y0 +

∫ t1

t0

f(t, y(t)) dt

So the real question is how to tackle the integral.

Let’s revisit integrals. Suppose you wanted to know
∫ b

a
g(x) dx but couldn’t do it. One really bad

approximation is just a left rectangle. That is

∫ b

a

g(x) dx ≈ (b− a)g(a)

Using this in the Basic Formula yields:

y1 = y0 +

∫ t1

t0

f(t, y(t)) dt

y1 ≈ y0 + (t1 − t0)f(t0, y(t0))

y1 ≈ y0 + (t1 − t0)f(t0, y0)

y1 ≈ y0 + hf(t0, y0)

Well then, we’ve just got Euler’s Method!

What this suggests is that better methods of approximating the integral yield better approxima-
tions for our IVP.



3. The Runge-Trapezoid Method:

A second way to approximate the integal would be to construct a trapezoid using the endpoints:
∫ b

a

g(x) dx ≈

1

2
(b− a)(g(a) + g(b))

Using this in the Basic Formula yields:

y1 = y0 +

∫ t1

t0

f(t, y(t)) dt

y1 ≈ y0 +
1

2
(t1 − t0)(f(t0, y(t0)) + f(t1, y(t1)))

y1 ≈ y0 +
1

2
h(f(t0, y0) + f(t0 + h, y(t1)))

Which is all fun and games until we notice the right side has an y(t1) in it, and this is what
we want. How can we resolve this? We do something slick and we plug in the result of Euler’s
Method into this:

y1 ≈ y0 +
1

2
h(f(t0, y0) + f(t0 + h, y0 + hf(t0, y0)

︸ ︷︷ ︸

Euler:

))

Haha what fun. What we’re really doing is using one approximation of y(t1) to get what we think
will be a better one.

Runge-Trapezoidal Method

ti = ti−1 + h

yi ≈ yi−1 +
1

2
h
(

f(ti−1, yi−1) + f(ti−1 + h, yi−1 + hf(ti−1, yi−1))
)

Back to our first IVP dy

dt
= t + y with y(1) = 2. If h = 0.1 then proceeding one step gives us

t1 = 0.1 and:

y1 ≈ y0 +
1

2
h (f(t0, y0) + f(t0 + h, y0 + hf(t0, y0)))

≈ 2 +
1

2
(0.1) (f(1, 2) + f(1 + 0.1, 2 + 0.1f(1, 2)))

≈ 2 +
1

2
(0.1) (1 + 2 + f(1.1, 2 + 0.1(1 + 2)))

≈ 2 +
1

2
(0.1) (1 + 2 + 1.1 + 2 + 0.1(1 + 2))) = 2.32

Here’s the Runge-Trapezoidal Method applied to our first IVP with 10 steps of size 0.1:

0 1 2 y(1)=2
i ti yi So
1 1 + 0.1 = 1.1 2.32 y(1.1) ≈ 2.32
2 1.1 + 0.1 = 1.2 2.6841 y(1.2) ≈ 2.6841
3 1.2 + 0.1 = 1.3 3.09693 y(1.3) ≈ 3.09693
4 1.3 + 0.1 = 1.4 3.56361 y(1.4) ≈ 3.56361
5 1.4 + 0.1 = 1.5 4.08979 y(1.5) ≈ 4.08979
6 1.5 + 0.1 = 1.6 4.68171 y(1.6) ≈ 4.68171
7 1.6 + 0.1 = 1.7 5.34629 y(1.7) ≈ 5.34629
8 1.7 + 0.1 = 1.8 6.09116 y(1.8) ≈ 6.09116
9 1.8 + 0.1 = 1.9 6.92473 y(1.9) ≈ 6.92473
10 1.9 + 0.1 = 2 7.85632 y(2) ≈ 7.85632

Remember the exact value of y(2) = 4e− 2− 1 ≈ 7.8731273138361809414411498854106.



4. The Runge-Midpoint Method:

A third way to approximate the integral is a midpoint rectangle:

∫ b

a

g(x) dx ≈ (b− a)g

(
a+ b

2

)

Using this in the Basic Formula and using the fact that our midpoint is t0 +
1

2
h yields:

y1 = y0 +

∫ t1

t0

f(t, y(t)) dt

y1 ≈ y0 + (t1 − t0)f

(

t0 +
1

2
h, y

(

t0 +
1

2
h

))

y1 ≈ y0 + hf

(

t0 +
1

2
h, y

(

t0 +
1

2
h

))

Which again is all fun and games until we realize we don’t know y
(
t0 +

1

2
h
)
so we swap in Euler’s

Method again using a half-step, that is y0 +
1

2
hf(t0, y0) and so

y1 ≈ y0 + hf
(

t0 +
1

2
h, y0 +

1

2
hf(t0, y0)

︸ ︷︷ ︸

Euler

)

Runge-Midpoint Method

ti = ti−1 + h

yi ≈ yi−1 + hf

(

ti−1 +
1

2
h, yi−1 +

1

2
hf(ti−1, yi−1)

)

Back to our first IVP dy

dt
= t + y with y(1) = 2. If h = 0.1 then proceeding one step gives us

t1 = 0.1 and:

yi ≈ y0 + hf

(

t0 +
1

2
h, y0 +

1

2
hf(t0, y0)

)

≈ 2 + 0.1f

(

1 +
1

2
(0.1), 2 +

1

2
(0.1)f(1, 2)

)

≈ 2 + 0.1f

(

1 +
1

2
(0.1), 2 +

1

2
(0.1)(1 + 2)

)

≈ 2 + 0.1

(

1 +
1

2
(0.1) + 2 +

1

2
(0.1)(1 + 2)

)

= 2.32

This is actually the same as the Runge-Trapezoidal Method and in fact for this particular IVP
the Runge-Midpoint Method applied to our first IVP actually gives the same result as the Runge-
Trapezoidal Method, so we omit the full table.



5. Everything together:

Let y(t) be the solution to dy

dt
= ty + t with y(0) = 1. Approximate y(1) using n = 10 steps of

size h = 0.1:

Euler
0 0 1 y(0)=1
i ti yi ≈ yi−1 + hf(ti−1, yi−1) So
1 0 + 0.1 = 0.1 1 + 0 = 1 y(0.1) ≈ 1
2 0.1 + 0.1 = 0.2 1 + 0.02 = 1.02 y(0.2) ≈ 1.02
3 0.2 + 0.1 = 0.3 1.02 + 0.0404 = 1.0604 y(0.3) ≈ 1.0604
4 0.3 + 0.1 = 0.4 1.0604 + 0.061812 = 1.12221 y(0.4) ≈ 1.12221
5 0.4 + 0.1 = 0.5 1.12221 + 0.0848885 = 1.2071 y(0.5) ≈ 1.2071
6 0.5 + 0.1 = 0.6 1.2071 + 0.110355 = 1.31746 y(0.6) ≈ 1.31746
7 0.6 + 0.1 = 0.7 1.31746 + 0.139047 = 1.4565 y(0.7) ≈ 1.4565
8 0.7 + 0.1 = 0.8 1.4565 + 0.171955 = 1.62846 y(0.8) ≈ 1.62846
9 0.8 + 0.1 = 0.9 1.62846 + 0.210277 = 1.83873 y(0.9) ≈ 1.83873
10 0.9 + 0.1 = 1 1.83873 + 0.255486 = 2.09422 y(1) ≈ 2.09422

Runge-Trapezoidal
0 0 1 y(0)=1
i ti yi So
1 0 + 0.1 = 0.1 1.01 y(0.1) ≈ 1.01
2 0.1 + 0.1 = 0.2 1.04035 y(0.2) ≈ 1.04035
3 0.2 + 0.1 = 0.3 1.09197 y(0.3) ≈ 1.09197
4 0.3 + 0.1 = 0.4 1.16645 y(0.4) ≈ 1.16645
5 0.4 + 0.1 = 0.5 1.2661 y(0.5) ≈ 1.2661
6 0.5 + 0.1 = 0.6 1.39414 y(0.6) ≈ 1.39414
7 0.6 + 0.1 = 0.7 1.55478 y(0.7) ≈ 1.55478
8 0.7 + 0.1 = 0.8 1.75355 y(0.8) ≈ 1.75355
9 0.8 + 0.1 = 0.9 1.99751 y(0.9) ≈ 1.99751
10 0.9 + 0.1 = 1 2.29576 y(1) ≈ 2.29576

Runge-Midpoint
0 0 1 y(0)=1
i ti yi So
1 0 + 0.1 = 0.1 1.01 y(0.1) ≈ 1.01
2 0.1 + 0.1 = 0.2 1.0403 y(0.2) ≈ 1.0403
3 0.2 + 0.1 = 0.3 1.09182 y(0.3) ≈ 1.09182
4 0.3 + 0.1 = 0.4 1.16613 y(0.4) ≈ 1.16613
5 0.4 + 0.1 = 0.5 1.26556 y(0.5) ≈ 1.26556
6 0.5 + 0.1 = 0.6 1.39328 y(0.6) ≈ 1.39328
7 0.6 + 0.1 = 0.7 1.55351 y(0.7) ≈ 1.55351
8 0.7 + 0.1 = 0.8 1.75172 y(0.8) ≈ 1.75172
9 0.8 + 0.1 = 0.9 1.99497 y(0.9) ≈ 1.99497
10 0.9 + 0.1 = 1 2.2923 y(1) ≈ 2.2923

For reference the actual answer is 2e0.5 − 1 ≈ 2.2974425414002562936973015756283.



MATH 246: Chapter 1 Section 8: Exact Differential Equations

Justin Wyss-Gallifent

Main Topics:

• Exact Differential Equations.

• Method of Solution.

• Integrating Factors.

1. A Bit of History and Introduction: Suppose H(x, y) is a function and y is a function of x.
Then by the chain rule we know d

dxH(x, y) = Hx(x, y) +Hy(x, y)
dy
dx .

So now consider the following differential equation:

3x2y2 + 2x3y
dy

dx
= 0

You may notice that the left side looks like the result of the chain rule and is actually so, when
H(x, y) = x3y2. Don’t worry about if there’s a formal method for where H(x, y) comes from
for now, just notice that Hx(x, y) = 3x2y2 and Hy(x, y) = 2x3y. What this means is that the
differential equation may be rewritten by undoing the chain rule on the left:

3x2y2 + 2x3y
dy

dx
︸ ︷︷ ︸

d

dx
[x3y2]

= 0

So then when the derivative of something is zero, that thing is a constant:

d

dx

[
x3y2

]
= 0

x3y2 = C

and we’ve solved it, at least implicitly!

2. Definition and Method: A differential equation is exact if it has the form:

Hx(x, y) +Hy(x, y)
dy

dx
= 0

for some function H(x, y). When a differential equation is exact, solving implicitly is as easy as
finding H(x, y) and setting H(x, y) = C for any constant.

Here are a few exact differential equations. For each, H(x, y) is written in the middle and the
implicit solution to the right.

Exact DE H(x, y) Solution to DE

y + x dy
dx = 0 H(x, y) = xy xy = C

y + (x+ 2y) dydx = 0 H(x, y) = xy + y2 xy + y2 = C
1
y − x

y2

dy
dx = 0 H(x, y) = x

y
x
y = C

y cos(xy) + x cos(xy) dydx = 0 H(x, y) = sin(xy) sin(xy) = C



3. Detecting Exactness and Finding H: There is a trick to detecting whether a differential
equation is exact. If the differential equation has the form:

M +N
dy

dx
= 0

then it is exact if and only if My = Nx. You can test all the ones above. Then you can check that
this next one is not exact:

xy + y
dy

dx
= 0

In this case My = x and Nx = 0. Not equal, not exact.

Once you know that your differential equation is exact, often you can guess at H(x, y). However
if you’re struggling, there’s a systematic method for finding it. Here’s an example from above:

y + (x+ 2y)
dy

dx
= 0

We want H(x, y) with (A) Hx(x, y) = y and (B) Hy(x, y) = x+ 2y. Observe:

We want (A): Hx(x, y) = y

This tells us that: H(x, y) = xy + h(y)
From this line: Hy(x, y) = x+ h′(y)
But from (B): Hy(x, y) = x+ 2y
Set these equal: x+ h′(y) = x+ 2y
Solve for h′(y): h′(y) = 2y
Find h(y): h(y) = y2 +D

Put back into second line: H(x, y) = xy + y2 +D

We can choose any D so choose D = 0 to get H(x, y) = xy + y2.

Example: Find H(x, y) to solve x + 1 + 1
y − x

y2

dy
dx = 0. Follow the exact procedure

above, here we want (A) Hx(x, y) = x+ 1 + 1
y and (B) Hy(x, y) = − x

y2 :

We want (A): Hx(x, y) = x+ 1 + 1
y

This tells us that: H(x, y) = 1
2x

2 + x+ x
y + h(y)

From this line: Hy(x, y) = − x
y2 + h′(y)

But from (B): Hy(x, y) = − x
y2

Set these equal: − x
y2 + h′(y) = − x

y2

Solve for h′(y): h′(y) = 0
Find h(y): h(y) = D

Put back into second line: H(x, y) = 1
2x

2 + x+ x
y +D

Then choose D = 0 to get H(x, y) = 1
2x

2 + x + x
y and the solution to our DE is

1
2x

2 + x+ x
y = C.



4. Integrating Factors: It’s not uncommon to have a differential equation which is not quite exact
but can be made exact by multiplying through by some function called an integrating factor. For
example the differential equation

2y + x
dy

dx
= 0

is not exact because My = 2 and Nx = 1 so My 6= Nx. But if we multiply through by x we get
the new differential equation

2xy + x2 dy

dx
= 0

which is exact because My = 2x and Nx = 2x. Now H(x, y) = x2y and the solution is x2y = C.

The question is how to come up with this integating factor. This is very challenging so we’ll look
at two specific cases, either the integrating factor is a function f(x) of only x or the integrating
factor is a function g(y) of only y.



5. Examples:

Example 1: Consider the diffential equation we’ve seen before:

2y + x
dy

dx
= 0

Here M = 2y and N = x, these are different so it’s not exact. Let’s look for some f(x)
so that when we multiply through the result is exact:

2yf(x) + xf(x)
dy

dx
= 0

For this to be exact we’d need:

[xf(x)]x = [2yf(x)]y

1f(x) + xf ′(x) = 2f(x) + 2y(0)

xf ′(x) = f(x)

f ′(x) =
f(x)

x

We can see that f(x) = x does the job. This is then our integrating factor and we
multiply our original differential equation through by it to get the exact differential
equation

2xy + x2 dy

dx
= 0

which has H(x, y) = x2y and hence solution x2y = C.

Addendum: If we tried g(y) we’d want this to be exact:

2yg(y) + xg(y)
dy

dx
= 0

This would mean:

[xg(y)]x = [2yg(y)]y

1g(y) + x(0) = 2g(y) + 2yg′(y)

g′(y) = −
g(y)

2y

It’s much harder to see what might work here. Interestingly g(y) = y−1/2 will work,
yielding the exact:

2y1/2 + xy−1/2 dy

dx

which has H(x, y) = 2xy1/2 and hence solution 2xy1/2 = C.



Example 2: Consider the differential equation

y + (x+ xy)
dy

dx
= 0

Here M = y and N = x + xy, these are different so it’s not exact. Let’s look for some
g(y) so that when we multiply through the result is exact:

yg(y) + (x+ xy)g(y)
dy

dx
= 0

For this to be exact we’d need:

[(x+ xy)g(y)]x = [yg(y)]y

(1 + y)g(y) = 1g(y) + yg′(y)

g(y) + yg(y) = g(y) + yg′(y)

g′(y) = g(y)

We can see that g(y) = ey does the job. This is then our integrating factor and we
multiply our original differential equation through by it to get the exact differential
equation

yey + (x+ xy)ey
dy

dx
= 0

which has H(x, y) = xyey and hence solution xyey = C.

Addendum: If we tried f(x) we’d want this to be exact:

yf(x) + (x+ xy)f(x)
dy

dx
= 0

This would mean:

[(x+ xy)f(x)]x = [yf(x)]y

(1 + y)f(x) + (x+ xy)f ′(x) = 1f(x) + y(0)

f(x) + yf(x) + (x+ xy)f ′(x) = f(x)

yf(x) + (x+ xy)f ′(x) = 0

f ′(x) = −
yf(x)

(x+ xy)

It’s not at all obvious if anything this works.



MATH 246: Chapter 2 Section 1: Intro to Higher Order Linear

Justin Wyss-Gallifent

Main Topics:

• Reminder and Notation.

• Interval of Existence.

1. Introduction Since higher order DEs are difficult we’re going to focus on linear higher order
DEs. We’ll narrow it down even more but for now that’s where we are. Just a reminder that
these look like, all in linear normal form:

First-Order y′ + a(t)y = f(t) (We can solve these)
Second-Order y′′ + a(t)y′ + b(t)y = f(t)
Third-Order y′′′ + a(t)y′′ + b(t)y′ + c(t)y = f(t)
Etc. Etc.

2. Notation Note

It’s not uncommon to see an alternate notation for the derivative from here on. We often write
Dy instead of y′, D2y instead of y′′ and so on.

3. Existence Theory

The theory is similar to what we’ve seen for first-order but the initial value needs a bit more:

• A first order linear IVP requires knowing y(tI) = y0. There is a unique solution on the
interval of existence which is the largest open interval containing tI on which a(t) and f(t)
are differentiable.

• A second order linear IVP requires knowing y(tI) = y0 and y′(tI) = y1. There is a unique
solution on the interval of existence which is the largest open interval containing tI on which
a(t), b(t) and f(t) are differentiable.

• A third order linear IVP requires knowing y(tI) = y0 and y′(tI) = y1 and y′′(tI) = y2. There
is a unique solution on the interval of existence which is the largest open interval containing
tI on which a(t), b(t), c(t) and f(t) are differentiable.

• From here you can certainly see the pattern.

Note: The proof (of existence and uniqueness) is difficult. The special case for first order linear
is easy and we saw it because we explicitly constructed the solution.

Example: y′′ + 1

t y
′ − 1

t−3
y = t with y(1) = 17 and y′(1) = 2 has a unique solution on

(0, 3). If instead we have y(4) = 17 then this has a unique solution on (3,∞).

Example: For t−1/2y′′ + ety′ − sin(t)y = t
6−t with y(1) = 8 and y′(1) = 3 we have to

first rewrite in linear normal form as y′′ + et
√
ty′ −

√
t sin(t)y = t3/2

6−t which then has a
unique solution on (0, 6).

Example: The IVP y′′′ − 1

t y
′′ + ety′ − sin(t)y = t

10−t with y(3) = 8 and y′(3) = 3 and
y′′(3) = 5 has a unique solution on (0, 10).

Example: The IVP D2y − Dy − 2y = 0 with y(0) = 1 and y′(0) = −3 has a unique
solution on (−∞,∞). If we notice that y = e2x is a solution then we know it’s the only
solution.



MATH 246: Chapter 2 Section 2: Homogeneous Equations - Method and Theory
Justin Wyss-Gallifent

Main Topics:

• Definition of Homogeneous.

• Motivational Example for Second Order.

• Theory for Second and Third Order.

1. Introduction: Since even linear higher-order DEs are difficult we are going to simplify even
more. For today we’re going to look at homogeneous higher-order linear DEs, in which the forcing
function f(t) is equal to 0. That is:

First-Order y′ + a(t)y = 0
Second-Order y′′ + a(t)y′ + b(t)y = 0
Third-Order y′′′ + a(t)y′′ + b(t)y′ + c(t)y = 0
...

...

2. A Motivational Example: Consider the second-order homogeneous linear DE:

y′′ − y′ − 2y = 0

Next look at the following two functions, don’t worry about where they came from:

Y1(t) = e2t and Y2(t) = e−t

We can easily see that these are both solutions to the DE by plugging them (and their derivatives)
in and checking.

(a) Observation 1 - Getting More Solutions:

Notice that if we take a linear combination of these two, meaning

Y (t) = C1e
2t + C2e

−t

where C1 and C2 are constants. Then we can easily see that this is also a solution to the DE
by plugging it (and its derivatives) in and checking.

(b) Observation 2 - Getting All Solutions:

We can build new solutions from these two but can we build all solutions this way? Well
suppose that we had some solution to the DE, call it Y (t). What we want to know is if we
can find C1 and C2 so that Y (t) = C1e

2t + C2e
−t for this Y (t)?

Well, suppose we find that Y (0) = y0 and Y ′(0) = y1. Since Y ′(t) = 2C1e
2t − C2e

−t we
would need

y0 = Y (0) = C1 + C2

y1 = Y ′(0) = 2C2 − C2

Can we find such values? Since

∣

∣

∣

∣

1 1
2 −1

∣

∣

∣

∣

6= 0 there is a unique solution.

Notice now that since this is a solution to the IVP and since there is only one solution to
the IVP this must be the solution we were looking for.



(c) Observation 3 - Anything Special About Those Two?

We can’t just start with any two solutions. To see this observe that if we’d started with
Y1(t) = e2t and Y2(t) = 17e2t that both of these are solutions. Again any linear combi-
nation Y (t) = C1e

2t + C217e
2t is a solution. However is every solution to the DE a linear

combination? Again, suppose Y (t) is a solution and Y (0) = y0 and Y ′(0) = y1. Then
Y ′(t) = 2C1e

2t + 34C2e
2t and we would need

y0 = Y (0) = C1 + 17C2

y1 = Y ′(0) = 2C1 + 34C2

Since

∣

∣

∣

∣

1 17
2 34

∣

∣

∣

∣

= 0 there may be no solution. That is, we can’t guarantee a solution.

3. Theory:

(a) Theory for Second-Order Homogeneous: y′′ + a(t)y′ + b(t)y = 0

• For a second-order homogeneous linear DE we need to find two solutions Y1(t) and Y2(t)
with a special relationship. That relationship is that their Wronskian does not equal the
zero function, where:

W [Y1, Y2] =

∣

∣

∣

∣

Y1 Y2

Y ′

1
Y ′

2

∣

∣

∣

∣

Alternately the two solutions cannot be multiples of each other. They form a fundamental

set or fundamental pair of solutions {Y1(t), Y2(t)}.

• Every solution is then a linear combination of the fundamental pair. This means the
general solution is Y (t) = C1Y1(t) + C2Y2(t).

• A second-order IVP must provide y(tI) and y′(tI) in order to find the specific solution.

• This solution is unique on the interval of existence and uniqueness which is the largest
open interval containing tI on which a(t) and b(t) are differentiable.

(b) Theory for Third-Order Homogeneous: y′′′ + a(t)y′′ + b(t)y′ + c(t)y = 0

• For a third-order homogeneous linear DE we need to find three solutions Y1(t), Y2(t),
and Y3(t) with a special relationship. That relationship is that their Wronskian does
not equal the zero function, where:

W [Y1, Y2, Y3] =

∣

∣

∣

∣

∣

∣

Y1 Y2 Y3

Y ′

1
Y ′

2
Y ′

3

Y ′′

1
Y ′′

2
Y ′′

3

∣

∣

∣

∣

∣

∣

Alternately it must be impossible to write one of the solutions as a linear combination
of the others. They form a fundamental set of solutions {Y1(t), Y2(t), Y3(t)}.

• Every solution is then a linear combination of the fundamental set. This means the
general solution is Y (t) = C1Y1(t) + C2Y2(t) + C3Y3(t).

• A third-order IVP must provide y(tI), y
′(tI), and y′′(tI) in order to find the specific

solution.

• This solution is unique on the interval of existence and uniqueness which is the largest
open interval containing tI on which a(t) and b(t) and c(t) are differentiable.

(c) Theory for Higher-Order:

You can probably see the pattern.

(d) Critical Note: Don’t worry about where these fundamental sets are coming from right now,
just realize that we (somehow) need obtain them!



4. Practice for Both:

Here are some examples:

Example: Consider y′′ + 4y = 0. First we’ll show that Y1(t) = sin(2t) and Y2(t) =
cos(2t) form a fundamental pair. We check they are solutions (omitted) and we check:

W [Y1, Y2] =

∣

∣

∣

∣

sin(2t) cos(2t)
2 cos(2t) −2 sin(2t)

∣

∣

∣

∣

= −2 sin2(2t)− 2 cos2(2t) = −2 6≡ 0

This tells us that Y1(t) and Y2(t) form a fundamental pair and that the general solution
is:

Y (t) = C1 sin(2t) + C2 cos(2t)

So now if we have the IVP with Y (0) = 4 and Y ′(0) = 2 we can find the specific solution
by first finding:

Y ′(t) = 2C1 cos(2t)− 2C2 sin(2t)

and then solving the system:

4 = Y (0) = C1 sin(2(0)) + C2 cos(2(0)) = C2

2 = Y ′(0) = 2C1 cos(2(0))− 2C2 sin(2(0)) = 2C1

So that C1 = 1 and C2 = 4 and the specific solution is:

Y (t) = sin(2t) + 4 cos(2t)

Example: Consider (1 + t2)y′′ − 2ty′ + 2y = 0. First we’ll show that Y1(t) = t and
Y2(t) = t2−1 form a fundamental pair. Notice that it doesn’t matter whether we divide
by 1 + t2 or not when we check these. We check they are solutions (omitted) and we
check:

W [Y1, Y2] =

∣

∣

∣

∣

t t2 − 1
1 2t

∣

∣

∣

∣

= 2t2 − (t2 − 1) = t2 + 1 6≡ 0

This tells us that Y1(t) and Y2(t) form a fundamental pair and that the general solution
is:

Y (t) = C1t+ C2(t
2 − 1)

So now if we have the IVP with Y (2) = −5 and Y ′(2) = 7 we can find the specific
solution by first finding:

Y ′(t) = C1 + 2C2t

and then solving the system:

−5 = Y (2) = C1(2) + C2(2
2 − 1) = 2C1 + 3C2

7 = Y ′(2) = C1 + 2C2(2) = C1 + 4C2

So that C1 = − 41

5
and C2 = − 19

5
and the specific solution is:

Y (t) = −
41

5
t+

19

5
(t2 − 1)



Example: Consider D3y − 2D2y = 0 First we’ll show that Y1(t) = 1, Y2(t) = t and
Y3(t) = e2t form a fundamental set. We check they are solutions (omitted) and we
check:

W [Y1, Y2, Y3] =

∣

∣

∣

∣

∣

∣

1 t e2t

0 1 2e2t

0 0 4e2t

∣

∣

∣

∣

∣

∣

= 4e2t 6≡ 0

This tells us that Y1(t), Y2(t) and Y3(t) form a fundamental set and that the general
solution is:

Y (t) = C1 + C2t+ C3e
2t

So now if we have the IVP with Y (0) = 1, Y ′(0) = 0 and Y ′′(0) = −4 we can find the
specific solution by first finding:

Y ′(t) = C2 + 2C3e
2t

Y ′′(t) = 4C3e
2t

and then solving the system:

1 = Y (0) = C1 + C3

0 = Y ′(0) = C2 + 2C3

−4 = Y ′′(0) = 4C3

So that C3 = −1, C2 = 2 and C1 = 2 and the specific solution is:

Y (t) = 2 + 2t− e2t



5. More about Fundamental Sets:

(a) Natural Fundamental Sets

There’s more than just one fundamental set, and one that comes up a lot is called the natural
fundamental set.

In the second-order case this is the set {Y1, Y2} with Y1 having Y1(tI) = 1 and Y ′

1
(tI) = 0

and with Y2 having Y2(tI) = 0 and Y ′

2
(tI) = 1.

In the third-order case this is the set {Y1, Y2, Y3} with Y1 having Y1(tI) = 1, Y ′

1
(tI) = 0, and

Y ′′

1
(tI) = 0, with Y2 having Y2(tI) = 0, Y ′

2
(tI) = 1, and Y ′′

2
(tI) = 0, and with Y3 having

Y3(tI) = 1, Y ′

3
(tI) = 0, and Y ′′

3
(tI) = 1,

Beyond there you can probably see the pattern.

(b) Reduction of Order (OMITTED)

The big question of course is where the fundamental set comes from. We’ll address that a
bit later but for now we have one helper.

If we have one solution Y1(t) then the second one is very often a multiple of the first. So we
can set Y2(t) = uY1(t) and when we plug this into the DE and use the fact that Y1(t) is a
solution we end up in a situation where we can find a first-order DE (hence the name) that
we can use to find u.

Example: You can check that Y1(t) = e5t is a solution to y′′ − 3y′ − 10y = 0. To find
the other by reduction of order we put Y2(t) = ue5t. We then find

Y ′

2
(t) = u′e5t + 5ue5t and

Y ′′

2
(t) = u′′e5t + 5u′e5t + 5u′e5t + 25ue5t = u′′e5t + 10u′e5t + 25ue5t

and plug these into the DE:

y′′ − 3y′ − 10y = 0

(u′′e5t + 10u′e5t + 25ue5t)− 3(u′e5t + 5ue5t)− 10(ue5t) = 0

u′′ + 10u′ + 25u− 3u′ − 15u− 10u = 0

u′′ + 7u′ = 0

If we let w = u′ then this gives us w′ + 7w = 0 which has solution w = Ce−7t and so
u′ = Ce−7t and so u = − 1

7
Ce−7t +D and another solution is

Y2(t) =

(

−
1

7
Ce−7t +D

)

e5t = −
1

7
Ce−2t +De5t

Since this is true for any C and D we can pick the solution

Y2(t) = e−2t

for which W [Y1, Y2] 6≡ 0 and we have our fundamental pair.



MATH 246: Chapter 2 Section 3: Matrices and Determinants

Justin Wyss-Gallifent

Main Topics:

• Matrices

• Determinants

• Relationship to Linear Systems

1. Introduction

As the course progresses we’ll run into matrices and we’ll need some basic facts. For now we
simply need to know what a matrix is, what a determinant is, and what they can be used for.

2. Matrices

A matrix is basically a rectangular array of numbers. In this course pretty much all the matrices
we’ll work with will be square and either 2× 2 or 3× 3.

Examples:

A =

[

3 −2
0 1

]

B =

[

1 3
−5 7

]

C =





4 3 1
−2 5 0
0 8 −3





3. Determinants

The determinant of a matrix is a single number associated with the matrix which tells us certain
properties of that matrix. It is the single most important number associated with a matrix. It
can be denoted either by putting det in front of the matrix or by putting the matrix values (not
the brackets) inside vertical bars like absolute values.

It can be defined recursively but we’ll only need it for 2× 2 and 3× 3 so here are the rules:

det

[

a b

c d

]

=

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad− bc

and

det





a b c

d e f

g h i



 =

∣

∣

∣

∣

∣

∣

a b c

d e f

g h i

∣

∣

∣

∣

∣

∣

= a

∣

∣

∣

∣

e f

h i

∣

∣

∣

∣

− b

∣

∣

∣

∣

d f

g i

∣

∣

∣

∣

+ c

∣

∣

∣

∣

d e

g h

∣

∣

∣

∣

Example:

∣

∣

∣

∣

3 −2
0 1

∣

∣

∣

∣

= (3)(1)− (−2)(0) = 3

Example:

∣

∣

∣

∣

1 3
−5 7

∣

∣

∣

∣

= (1)(7)− (3)(−5) = 22

Example:

∣

∣

∣

∣

∣

∣

4 3 1
−2 5 0
0 8 −3

∣

∣

∣

∣

∣

∣

= 4

∣

∣

∣

∣

5 0
8 −3

∣

∣

∣

∣

− 3

∣

∣

∣

∣

−2 0
0 −3

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

−2 5
0 8

∣

∣

∣

∣

= 4(−15)− 3(6) + 1(−16)

= −94



4. Relationship to Systems of Equations

In linear algebra matrices are used to solve linear systems of equations. We don’t need to do that
but we do need to know that determinants of matrices can tell us information about the solutions.

(a) All Systems

If we put the coefficients of the variables into a matrix and find the determinant then this
determinant will be nonzero if and only if there is a unique solution to the system. If we do
get zero then there will be either no solutions or infinitely many solutions. For now we need
not distinguish between these outcomes.

Example: The system

2x+ 3y = 7

5x− 7y = 23

Since

∣

∣

∣

∣

2 3
5 −7

∣

∣

∣

∣

= −29 6= 0 there is only one solution.

Example: The system

4x+ 8y = 3

6x+ 12y = −8

Since

∣

∣

∣

∣

4 8
6 12

∣

∣

∣

∣

= 0 there are either no solutions or infinitely many solutions.

Example: The system

4x+ 3y + 1z = 7

−2x+ 5y + 0z = −17

0x+ 8y − 3z = 2

Since

∣

∣

∣

∣

∣

∣

4 3 1
−2 5 0
0 8 −3

∣

∣

∣

∣

∣

∣

= −94 6= 0 there is only one solution.



(b) Homogenous Systems

A homogeneous linear system is when all the constant terms are 0. Setting all the variables
to be zero always gives a solution, called the trivial solution. In this case if the determinant
is zero then there must be infinitely many solutions, meaning there are nontrivial solutions,
and if the determinant is nonzero then there is only the trivial solution, so there are no
nontrivial solutions.

Example: The system

2x+ 3y = 0

5x− 7y = 0

has the trivial solution x = y = 0. In addition since

∣

∣

∣

∣

2 3
5 −7

∣

∣

∣

∣

= −29 6= 0 this is the

only solution.

Example: The system

4x+ 8y = 0

6x+ 12y = 0

has the trivial solution x = y = 0. In addition since

∣

∣

∣

∣

4 8
6 12

∣

∣

∣

∣

= 0 there are (infinitely

many) other nontrivial solutions.

Example: The system

4x+ 3y + 1z = 0

−2x+ 5y + 0z = 0

0x+ 8y − 3z = 0

has the trivial solution x = y = z = 0. In addition since

∣

∣

∣

∣

∣

∣

4 3 1
−2 5 0
0 8 −3

∣

∣

∣

∣

∣

∣

= −94 6= 0

this is the only solution.



MATH 246: Chapter 2 Section 4: Homogeneous Equations with Constant Coefficients

Justin Wyss-Gallifent

Main Topics:

• The Characteristic Polynomial

• Real Simple Roots

• Real Multiple Roots

• Complex Simple Roots

• Complex Multiple Roots

1. Introduction:

We’ve established the fact that for an nth order homogeneous linear differential equation that we
need to find a fundamental set of n solutions denoted Y1, ..., Yn. Once we do this we have the
general solution

Y (t) = C1Y1 + C2Y2 + ...CnYn

The next question is how to get that fundamental set.

This is hard, so for now we’ll focus on the simpler situation where the DE has constant coefficients.
Examples:

y′′ + 2y′ − 3y = 0
2y′′′ − 5y = 0

D4y +D3y − 2D2y +Dy + y = 0

2. Inspirational Example: Consider y′′+2y′−3y = 0. Here because we’ve got constant multiples of
derivatives added to get zero, we think that perhaps solutions might be functions whose derivatives
are constant multiples of themselves. The primary example is ezt for various z. So let’s try - if
y = ezt is a solution to our equation then y′ = zezt and y′′ = z2ezt and we have:

y′′ + 2y′ − 3y = 0

z2ezt + 2zezt − 3ezt = 0

(z2 + 2z − 3)ezt = 0

Since ezt is always positive we must have

z2 + 2z − 3 = 0

(z + 3)(z − 1) = 0

and so either z = −3 or z = 1.

Lo and behold we’ve actually found two solutions, and we only needed two. We’ve found

Y1(t) = e−3t and Y2(t) = e1t

Thus the general solution is
Y (t) = C1e

−3t + C2e
t

3. General Idea: We see that the DE y′′ + 2y′ − 3y = 0 gave us a polynomial z2 + 2z − 3 = 0.
This will happen in every case, that polynomial is called the characteristic polynomial. The roots
of the polynomial will give us solutions and we will get enough complete our fundamental set.
However there are nuances, primarily that we have to deal with both real and complex roots and
each of these has two subcategories.

In addition, though we won’t prove this, the process is guaranteed to result in a fundamental set,
meaning the Wronskian would be nonzero if we checked it.



4. Real Simple Roots: A real simple root is a root which only appears once when we factor the
characteristic polynomial. For a simple real root z = r we get a solution ert. If there are n distinct
simple real roots then we get n solutions and we’re done.

Example: The DE y′′ − 3y′ − 10y = 0 has characteristic polynomial z2 − 3z − 10 or
(z−5)(z+2) with roots z = 5 and z = −2. So we have two simple real roots and therefore
the fundamental set is {e5t, e−2t} and the general solution is Y (t) = C1e

5t + C2e
−2t.

Example: The DE y′′′ − 5y′′ + 6y′ = 0 has characteristic polynomial z3 − 5z2 + 6z or
z(z − 3)(z − 2) with roots z = 0, z = 3 and z = 2. So we have three simple real roots
and therefore the fundamental set is {1, e3t, e2t} (notice that e0t = 1) and the general
solution is Y (t) = C1 + C2e

3t + C3e
2t

5. Real Multiple Roots A real multiple root is a root which appears more than once when we
factor the characteristic polynomial.

Example: The DE D3y − 15D2y + 75Dy − 125y = 0 has characteristic polynomial
z3 − 15z2 + 75z − 125 or (z − 5)3. there is only the root z = 5 with multiplicity m = 3.

Example: The DE y′′′ − 4y′′ + 4y′ = 0 has characteristic polynomial z3 − 4z2 + 4z or
z(z − 2)2. There is the root z = 0 which is a simple root (multiplicity 1) and the root
z = 2 with multiplicity m = 2.

For a real multiple root z = r with multiplicity m we get m solutions:

ert, tert, ..., tm−1ert

We’ll discuss where these come from in a later section.

Example: The DE D3y − 15D2y + 75Dy − 125y = 0 has characteristic polynomial
z3 − 15z2 + 75z − 125 or (z − 5)3. there is only the root z = 5 with multiplicity
m = 3. So we have the fundamental set {e5t, te5t, t2e5t} and the general solution
Y (t) = C1e

5t + C2te
5t + C3t

2e5t.

Example: The DE y′′′ − 4y′′ + 4y′ = 0 has characteristic polynomial z3 − 4z2 + 4z or
z(z − 2)2. There is the root z = 0 which is a simple root (multiplicity 1) and the root
z = 2 with multiplicity m = 2. So we have the fundamental set {1, e2t, te2t} and the
general solution Y (t) = C1 + C2e

2t + C3te
2t.



6. Complex Simple Roots: Complex roots always come in pairs. This means that if r + si is a
root then so is r− si. A complex simple root pair is a pair of roots r± si which appears only once
when we factor the characteristic polynomial. We may have to actually solve via the quadratic
formula to really see what’s up.

Example: The DE y′′ + y′ + 2y = 0 has characteristic polynomial z2 + z + 2. This
doesn’t obviously factor. To find the roots we set it equal to 0 and use the quadratic

formula to get z =
−1±

√
12−4(1)(2)

2(1) = − 1
2 ±

√
−7
2 = − 1

2 ±
√
7
2 i.

Example: The DE y′′ + 4y = 0 has characteristic polynomial z2 + 4 and setting
z2 + 4 = 0 gives z = ±

√
−4 = 0± 2i. We’ve made the 0 clear for a reason as you’ll see.

To see what’s going to happen, let’s just charge ahead for a minute using the previous approach.
If r + si is a root then e(r+si)t is a solution. But note that we can rewrite this:

e(r+si)t = erte(st)i = ert(cos(st) + i sin(st))

Since r − si is also a root then e(r−si)t is also a solution and we can rewrite this too:

e(r−si)t = erte(−st)i = ert(cos(−st) + i sin(−st)) = ert(cos(st)− i sin(st))

But these are complex solutions which don’t fill out our fundamental set. But since linear com-
binations of solutions are solutions, we can be sneaky and observe:

• 1
2 (sum of complex solutions)= ert cos(st) is a solution.

• 1
2i (difference of complex solutions)= ert sin(st) is a solution.

Thus for each complex simple root pair z = r ± si we get a pair of solutions ert cos(st) and
ert sin(st).

Example: The DE y′′+ y′+2y = 0 has characteristic polynomial z2+ z+2 with roots

we saw as − 1
2 ±

√
7
2 i. The fundamental set is then

{

e−
1

2
t cos

(√
7
2 t

)

, e−
1

2
t sin

(√
7
2 t

)}

and the general solution is Y (t) = C1e
− 1

2
t cos

(√
7
2 t

)

+ C2e
− 1

2
t sin

(√
7
2 t

)

.

Example: The DE y′′ + 4y = 0 has characteristic polynomial z2 + 4 with roots z =
0± 2i. The fundamental set is then {cos(2t), sin(2t)} and the general solution is Y (t) =
C1 cos(2t) + C2 sin(2t).

Example: The DE y′′′ − y′′ − 4y′ − 6y = 0 has characteristic polynomial z3 − z2 −
4z − 6 or (z − 3)(z2 + 2z + 2). We see that z = 3 is a root but for the rest we set

z2 + 2z + 2 = 0 and get z =
−2±

√
22−4(1)(2)

2 = −1 ± 1i. The fundamental set is then
{e3t, e−t cos(t), e−t sin(t)} and the general solution is Y (t) = C1e

3t + C2e
−t cos(t) +

C3e
−t sin(t).



7. Complex Multiple Roots: This expands like with real roots. For each complex multiple root
pair z = r ± si with multiplicity m we get m pairs of solutions

ert cos(st), tert cos(st), ..., tm−1ert cos(st)

ert sin(st), tert sin(st), ..., tm−1ert sin(st)

Example: The DE D6y + 8D5y + 65D4y + 232D3y + 904D2y + 1440Dy + 3600y = 0
has characteristic polynomial z6 + 8z5 + 65z4 + 232z3 + 904z2 + 1440z + 3600 or
(z2 + 9)(z2 + 4z + 20)2. The first part gives us z = 0 ± 3i and the second part

gives us z =
−4±

√
42−4(1)(20)

2 = −2 ± 4i with multiplicity 2. The fundamental
set is then {cos(3t), sin(3t), e−2t cos(4t), e−2t sin(4t), te−2t cos(4t), te−2t sin(4t)} and the
general solution is Y (t) = C1 cos(3t) + C2 sin(3t) + C3e

−2t cos(4t) + C4e
−2t sin(4t) +

C5te
−2t cos(4t) + C6te

−2t sin(4t).

8. Summary: In summary we construct the characteristic polynomial and find the roots. The roots
tell us how to construct the fundamental set as follows:

(a) If r is a real simple root then put in:
ert

(b) If r is a multiple simple root with multipliicty m then put in:

ert, tert, ..., tm−1ert

(c) If r ± si is a complex simple root pair then put in:

ert cos(st), ert sin(st)

(d) If r ± si is a complex multiple root pair with multiplicity m then put in:

ert cos(st), tert cos(st), ..., tm−1ert cos(st)

and
ert sin(st), tert sin(st), ..., tm−1ert sin(st)
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Main Topics:

• Inspirational Example

• General Method

1. Introduction:

Now that we know how to handle homogeneous linear differential equations with constant coeffi-
cents we’d like to see what happens if we make one small change. We’ll look at nonhomogeneous
linear differential equations. For now we’ll momentarily even remove the requirement that we
have constant coefficients. Examples:

y′′ + 2y′ − 3y = et

2y′′′ − 5ty = cos(2t)
y′′′′ + ety′′′ − 2ty′′ +Dy + t2y = t

2. An Inspirational Example:

The general idea is actually quite simple. To see, let’s look at the example y′′ + 2y′ − 3y = f(t)
where f(t) is unknown but nonzero.

Suppose that somehow we obtained just one solution. Call that solution Yp(t) where the p stands
for particular. Suppose that Y (t) is any other solution. Then look at what happens when we plug
in Y (t)− Yp(t):

(Y (t)− Yp(t))
′′ + 2(Y (t)− Yp(t))

′ − 3(Y (t)− Yp(t))

= [Y ′′(t) + 2Y ′(t)− 3Y (t)]−
[

Y ′′

p (t) + 2Y ′

p(t)− 3Yp(t)
]

= f(t)− f(t)

= 0

What this is telling us is that Y (t) − Yp(t) is a solution to the homogeneous version of the DE.
Since we know that all the solutions to the homogeneous version look like C1e

−3t+C2e
t this then

tells us that

Y (t)− Yp(t) = C1e
−3t + C2e

t

Y (t) = Yp(t) + C1e
−3t + C2e

t

3. General Method:

What this tells us is actually pretty fantastic. It says that when we’re confronted by an nth order
nonhomogeneous linear differential equation, all we need to do is two things:

(a) Find the fundamental set {Y1, ..., Yn} for the homogeneous version.

(b) Find one single solution Yp for the original differential equation.

Then the general solution to the original differential equation is

Y (t) = Yp(t) + C1Y1(t) + ...+ CnYn(t)

Of course these two things may not be easy. If the homogeneous version has constant coefficients
at least part (a) is easy. Let’s gloss over these for now to see things in practice.

4. Warning Keep in mind that the nonhomogeneous version doesn’t have a fundamental set, it’s the
homogeneous version which does. Then the fundamental set for the homogeneous version helps
us construct the general solution to the nonhomogeneous version.



5. Examples:

Here are some examples of both DEs and IVPs:

Example: Consider the differential equation y′′ + 4y = 4t.

(a) The homogeneous version y′′ + 4y = 0 has fundamental set {cos(2t), sin(2t)}.

(b) The function Yp(t) = t is a solution to y′′ + 4y = 4t.

Thus the general solution to y′′ + 4y = 4t is:

Y (t) = t+ C1 cos(2t) + C2 sin(2t)

Example: Consider the differential equation D3y − 2D2y = 9e3t.

(a) The homogeneous version D3y − 2D2y = 0 has fundamental set {1, t, e2t}.

(b) The function Yp(t) = e3t is a solution to D3y − 2D2y = 9e3t.

Thus the general solution to D3y − 2D2y = 9e3t is:

Y (t) = e3t + C1 + C2t+ C3e
2t

Example: Consider the initial value problem (1 + t2)y′′ − 2ty′ + 2y = 6 with Y (0) = 2
and Y ′(0) = 1.

(a) The homogeneous version (1+ t2)y′′−2ty′+2y = 0 has fundamental set {t, t2−1}.

(b) The function Yp(t) = 3 is a solution to (1 + t2)y′′ − 2ty′ + 2y = 6.

Thus the general solution to (1 + t2)y′′ − 2ty′ + 2y = 6 is:

Y (t) = 3 + C1t+ C2(t
2 − 1)

To solve the IVP we find
Y ′(t) = C1 + 2tC2

and we solve:

2 = Y (0) = 3 + C1(0) + C2(0
2 − 1)

1 = Y ′(0) = C1 + 2(0)C2

This tells us that C2 = 1 and C1 = 1 and so the specific solution is

Y (t) = 6 + t+ (t2 − 1)



MATH 246: Chapter 2 Section 6: Undetermined Coefficients

Justin Wyss-Gallifent

Main Topics:

• General Idea

• Solution Building

1. Introduction

Remember where we are: We have a non-homogenous linear differential equation with constant
coefficients. We know how to deal with the homogeneous version and we know that all we need
to do is get ahold of a single solution to the non-homogeneous version denoted Yp(t) and then we
can construct all solutions to the non-homogeneous version.

2. General Idea

The Method of Undetermined Coefficients will only work if the right side of the diffential equation
(the forcing function f(t)) is one of our nice forms like e2t or t2 or e2t cos(5t). It is based on the
premise that we know what the answer looks like and we only need to work out some coefficients.

Just to warm up before we get all formal:

If f(t) = e5t then Yp(t) probably looks like Ce5t

If f(t) = cos(2t) then Yp(t) probably looks like C1 cos(2t) + C2 sin(2t)
If f(t) = te5t then Yp(t) probably looks like C1e

5t + C2te
5t or (C1 + C2t)e

5t

The Method of Undetermined Coefficients will work as follows - we’ll suggest what the solution
looks like, with unknown constants, then we’ll plug it into the DE and find the constants that
make it work.

Example: If we have y′′ − y = 2e5t and we suggest that Yp(t) = Ce5t, then Y ′

p(t) =
5Ce5t and Y ′′

p (t) = 25Ce5t. If we plug these into the DE we get 25Ce5t − Ce5t = 2e5t

and so 24Ce5t = 2e5t and so C = 1

12
and the solution is Yp(t) =

1

12
e5t. Wow, that was

easy!

3. Building A Soluion

This is very procedural and works as follows. Here Qn(t) means a known polynomial of degree n

and GPn means and unknown generic polynomial of degree n with undetermined coefficients for
which we fill in A, B, C, etc. For example GP2 = At2 + Bt + C. This is actually far easier in
practice than it looks, the most common mistake is forgetting to check the multiplicity.

• If f(t) has the form Qn(t)e
rt, first find m the multiplicity of z as a root of the characteristic

polynomial. Often m = 0.
=⇒ Yp(t) = tm [GPn] e

rt

• If f(t) has the form Qn(t)e
rt cos(st) or Qn(t)e

rt cos(st), first find m the multiplicity of r+ si

as a root of the characteristic polynomial. Often m = 0.
=⇒ Yp(t) = tm [GPn] e

rt cos(st) + tm [GPn] e
rt sin(st)

Here the GPn are different with different coefficients!

• If f(t) is the sum of such forms, we add the resulting forms together. Make sure to never,
ever, repeat undetermined coefficients.



4. What to do with the Solution

Once we have our guess we plug it into the DE and simplify like mad. The result will have similar
functions on the left and right but the coefficients on the left will be the unknowns. We then
equate the coefficients on each side and solve for those unknowns.

Theoretical Note: What allows us to do this last step is that the functions in the solution are
linearly independent according to our construction of our solution.

5. Examples:

Example: Consider y′′ + 3y′ + 2y = 2e3t.

Forcing: f(t) = 2e3t.
CP: p(z) = z2 + 3z + 2 = (z + 2)(z + 1).

We have r = 3 which is not a root of p(z) so m = 0. Because the coefficient
polynomial 2 is degree 0, we have:

Yp(t) = tm [GP0] e
3t = t0(A)e3t = Ae3t

Then Y ′

p = 3Ae3t and Y ′′

p = 9Ae3t. We plug these into the DE to get

9Ae3t + 3(3Ae3t) + 2Ae3t = 2e3t

20Ae3t = 2e3t

A =
1

10

Then Yp(t) =
1

10
e3t.

Note: Because the fundamental set for the homogeneous version is
{

e−2t, e−t
}

the
general solution is Y (t) = 1

10
e3t + C1e

−2t + C2e
−t.

Example: Consider y′′ − 3y′ + 2y = 7e2t.

Forcing: f(t) = 7e2t.
CP: p(z) = z2 − 3z + 2 = (z − 2)(z − 2).

We have r = 2 which is a root of p(z) of multiplicity m = 1. Because the
coefficient polynomial 7 is degree 0, we have:

Yp(t) = tm [GP0] e
2t = t1(A)e2t = Ate2t

Then Y ′

p = Ae2t + 2Ate2t and Y ′′

p = 4Ae2t + 4Ate2t. We plug these into the DE to get

4Ae2t + 4Ate2t − 3(Ae2t + 2Ate2t) + 2(Ate2t) = 7e2t

Ae2t = 7e2t

A = 7

Then Yp(t) = 7te2t.

Note: Because the fundamental set for the homogeneous version is
{

e2t, et
}

the general
solution is Y (t) = 7te2t + C1e

2t + C2e
t.



Example: Consider y′′′ − y′′ = t2.

Forcing: f(t) = t2 = t2e0t.
CP: p(z) = z3 − z2 = z2(z − 1).

We have r = 0 which is a root of p(z) of multiplicity m = 2. Because the
coefficient polynomial t2 is degree 2, we have:

Yp(t) = tm [GP2] e
0t = t2(At2 +Bt+ C)e0t = At4 +Bt3 + Ct2

Then Y ′

p = 4At3 +3Bt2 +2Ct, Y ′′

p = 12At2 +6Bt+2C and Y ′′′

p = 24At+6B. We plug
these into the DE to get

24At+ 6B − (12At2 + 6Bt+ 2C) = t2

−12At2 + (24A− 6B)t+ (6B − 2C) = t2

Therefore −12A = 1, 24A − 6B = 0 and 6B − 2C = 0, giving A = − 1

12
, B = − 1

4
and

C = − 3

4
.

Then Yp(t) = − 1

12
t4 − 1

4
t3 − 3

4
t2.

Note: Because the fundamental set for the homogeneous version is {1, t, et} the general
solution is Y (t) = − 1

12
t4 − 1

4
t3 − 3

4
t2 + C1 + C2t+ C3e

t.

Example: Consider y′′ − 3y′ + 2y = 5te4t.

Forcing: f(t) = 5te4t.
CP: p(z) = z2 − 3z + 2 = (z − 1)(z − 1)

We have r = 4 which is not a root of p(z) so m = 0. Because the coefficient
polynomial 5t is degree 1, we have:

Yp(t) = tm [GP1] e
4t = t0(At+B)e4t = (At+B)e4t

Then Y ′

p = Ae4t + (4At + 4B)e4t and Y ′′

p = 8Ae4t + (16At + 16B)e4t. We plug these
into the DE to get

8Ae4t + (16At+ 16B)e4t − 3(Ae4t + (4At+ 4B)e4t) + 2((At+B)e4t) = 5te4t

(5A+ 6B)e4t + (6A)te4t = 5te4t

(5A+ 6B) + (6A)t = 5t

Therefore 5A+ 6B = 0 and 6A = 5, giving A = 5

6
and B = − 25

36
.

Then Yp(t) =
(

5

6
t− 25

36

)

e4t.

Note: Because the fundamental set for the homogeneous version is
{

e2t, et
}

the general

solution is Y (t) =
(

5

6
t− 25

36

)

e4t + C1e
2t + C2e

t.



Example: Consider y′′ + y′ = t+ 3et.

Forcing: f(t) = t+ 3et = te0t + 3e1t which has two parts.
CP: p(z) = z2 + z = z(z + 1).

For the te0t part we have r = 0 which is a root of p(z) = z2 + z = z(z + 1) of
multiplicity m = 1. Because the coefficient polynomial t is degree 1, we have:

First Part: Yp(t) = t1 [GP1] e
0t = t(At+B)e0t = At2 +Bt

For the 3e1t part we have r = 1 which is not a root of p(z) so m = 0. Because the
coefficient polynomial 3 is degree 0, we have:

Second Part: Yp(t) = tm [GP0] e
t = t0(C)et = Cet

Combining these we have:
Yp(t) = At2 +Bt+ Cet

Then Y ′

p = 2At+B + Cet and Y ′′

p = 2A+ Cet. We plug these into the DE to get

2A+ Cet + 2At+B + Cet = t+ 3et

2At+ (2A+B) + 2Cet = t+ 3et

Therefore A = 1

2
, B = −1 and C = 3

2
.

Then Yp(t) =
1

2
t2 − t+ 3

2
et.

Note: Because the fundamental set for the homogeneous version is {1, e−t} the general
solution is Y (t) = 1

2
t2 − t+ 3

2
et + C1 + C2e

−t.

Example: Consider y′′ + 2y′ + 2y = 17 cos(3t).

Forcing: f(t) = 17 cos(3t) = 17e0t cos(3t).
CP: p(z) = z2 + 2z + 2 with roots z = 1± 1i.

We have r + si = 0 + 3i which is not a root of p(z) so m = 0. Because the
coefficient polynomial 17 is degree 0, we have:

Yp(t) = tm [GP0] cos(3t) + tm [GP0] sin(3t)

= t0(A) cos(3t) + t0(B) sin(3t) = A cos(3t) +B sin(3t)

Then Y ′

p = −3A sin(3t)+ 3B cos(3t) and Y ′′

p = −9A cos(3t)− 9B sin(3t). We plug these
into the DE to get

−9A cos(3t)− 9B sin(3t) + 2(−3A sin(3t) + 3B cos(3t)) + 2(A cos(3t) +B sin(3t)) = 17 cos(3t)

(−7A+ 6B) cos(3t) + (−6A− 7B) sin(3t) = 17 cos(3t)

Therefore −7A+ 6B = 17 and −6A− 7B = 0, giving A = − 7

5
and B = 6

5
.

Then Yp(t) = − 7

5
cos(3t) + 6

5
sin(3t).

Note: Because the fundamental set for the homogeneous version is {e−t cos(t), e−t sin(t)}
the general solution is Y (t) = − 7

5
cos(3t) + 6

5
sin(3t) + C1e

−t cos(t) + C2e
−t sin(t)



6. Unfinished Examples:

Example: Consider y′′ + 2y′ + y = t2e−t + 17tet cos(3t).

Forcing: f(t) = t2e−t + 17tet cos(3t) which has two parts.
CP: p(z) = z2 + 2z + 1 = (z + 1)2.

For the t2e−t part we have r = −1 which is a root of p(z) of multiplicity 2.
Because the coefficient polynomial t2 is degree 2 we have:

First Part: Yp(t) = tm [GP2] e
−t = t2(At2 +Bt+ C)e−t = (At4 +Bt3 + Ct2)e−t

For the 17tet cos(3t) part we have r + si = 1 + 3i which is not a root of p(z) so m = 0.
Because the coefficient polynomial 17t is degree 1 we have:

Second Part: Yp(t) = tm [GP1] e
t cos(3t) + tm [GP1] e

t sin(3t)

= t0(Dt+ E)et cos(3t) + t0(Ft+G)et sin(3t)

= (Dt+ E)et cos(3t) + (Ft+G)et sin(3t)

Combining these we have:

Yp(t) = (At4 +Bt3 + Ct2)e−t + (Dt+ E)et cos(3t) + (Ft+G)et sin(3t)



MATH 246: Chapter 2 Section 7: Variation of Parameters

Justin Wyss-Gallifent

Main Topics:

• Restrictions.

• General Idea and Method.

1. Introduction

For the last chapter we’ve been focusing on finding a single solution YP (t) to a non-homogeneous
linear differential equation with constant coefficients where f(t) is a familiar form.

What we’re going to do now is remove both the restriction that the coefficients be constant and
the restriction that f(t) is of our familiar form. We will restrict to second-order though, and we’ll
make sure the coefficient of y′′ is 1 (linear normal form), which can easily be attained through
division. The goal will be the same, to find some YP (t), because again the general solution will be
Y (t) = Yp(t) + c1Y1(t) + c2Y2(t) where {Y1(t), Y2(t)} is the fundamental set for the homogeneous
version.

It may seem like if we could do this then why would we need the previous chapter? The answer is
that the method of this section gets extremely complicated for third and higher order and can be
computationally intensive even for second order. However it has the main advantage of providing
a formulaic solution.

2. General Idea

The general idea is to start with the fundamental set {Y1, Y2} for the homogeneous version and
ask a simple question - is it possible to find two function u1(t) and u2(t) such that y = u1Y1+u2Y2

is a solution to the nonhomogeneous version?

It turns out that simply plugging this y into the DE leaves us with quite a mess:

y′′ + a(t)y′ + b(t)y = f(t)

(u1Y1 + u2Y2)
′′ + a(t)(u1Y1 + u2Y2)

′ + b(t)(u1Y1 + u2Y2) = f(t)

(u′

1Y1 + u1Y
′

1 + u′

2Y2 + u2Y
′

2)
′ + a(t)(u′

1Y1 + u1Y
′

1 + u′

2Y2 + u2Y
′

2) + b(t)(u1Y1 + u2Y2)
︸ ︷︷ ︸

Quite a Mess!

= f(t)

However if we look at this mess we notice that u′

1Y1 + u′

2Y2 shows up in two places. It turns out
that if u′

1Y1 + u′

2Y2 = 0 then the above “Quite a Mess” tidies up:

(u1Y
′

1 + u2Y
′

2)
′ + a(t)(u1Y

′

1 + u2Y
′

2) + b(t)(u1Y1 + u2Y2) = f(t)

u′

1Y
′

1 + u1Y
′′

1 + u′

2Y
′

2 + u2Y
′′

2 + a(t)(u1Y
′

1 + u2Y
′

2) + b(t)(u1Y1 + u2Y2) = f(t)

u1 (Y
′′

1 + a(t)Y ′

1 + b(t)Y1)
︸ ︷︷ ︸

= 0 bc homog soln

+u2 (Y
′′

2 + a(t)Y ′

2 + b(t)Y2)
︸ ︷︷ ︸

= 0 bc homog soln

+u′

1Y
′

1 + u′

2Y
′

2 = f(t)

u′

1Y
′

1 + u′

2Y
′

2 = f(t)



The practical upshot of all this is that if we can find u1 and u2 satisfying the system

u′

1Y1 + u′

2Y2 = 0

u′

1Y
′

1 + u′

2Y
′

2 = f(t)

then Yp = u1Y1 + u2Y2 will be a solution to the nonhomogeneous DE.

Conveniently this is easy to solve because it’s a system of two equations and two unknowns where
the unknowns are u′

1 and u′

2.

Linear algebra gives us a generic formula because this is a matrix equation:

[
Y1 Y2

Y ′

1 Y ′

2

] [
u′

1

u′

2

]

=

[
0

f(t)

]

[
u′

1

u′

2

]

=

[
Y1 Y2

Y ′

1 Y ′

2

]
−1 [

0
f(t)

]

[
u′

1

u′

2

]

=
1

W [Y1, Y2]

[
Y ′

2 −Y2

−Y ′

1 Y1

] [
0

f(t)

]

[
u′

1

u′

2

]

=
1

W [Y1, Y2]

[
−Y2f(t)
Y1f(t)

]

Thus:

u′

1 = − Y2f(t)
W [Y1,Y2]

and u′

2 = Y1f(t)
W [Y1,Y2]

Then

u1 = −
∫

Y2f(t)
W [Y1,Y2]

dt and u2 =
∫

Y1f(t)
W [Y1,Y2]

dt

and the final result is:

Yp = u1Y1 + u2Y2

It’s worth noting that it’s sometimes messy but we can directly write down a formula for Yp(t):

Yp(t) = −Y1

∫
Y2f(t)

W [Y1, Y2]
dt+ Y2

∫
Y1f(t)

W [Y1, Y2]
dt



3. Examples

Example: Consider y′′ + y = sec t.

Since the characteristic polynomial is z2 + 1 with roots 0 ± 1i the fundamental
set for the homogeneous version is {cos t, sin t}.

We find

W [Y1, Y2] =

∣
∣
∣
∣

cos t sin t
− sin t cos t

∣
∣
∣
∣
= 1

and then we simply evaluate:

u1 = −
∫ (sin t)(sec t)

1 dt = −
∫
tan t dt = ln | cos t|+ C Choose u1 = ln | cos t|

u2 =
∫ (cos t)(sec t)

1 dt =
∫
1 dt = t+ C Choose u2 = t

Thus a particular solution to the nonhomogeneous version is

Yp(t) = u1Y1 + u2Y2 = (ln | cos t|) cos t+ t sin t

and the general solution to the nonhomogeneous version is

Yp(t) = (ln | cos t|) cos t+ t sin t+ c1 cos t+ c2 sin t

Example: Consider y′′ − 3y′ + 2y = t.

Since the characteristic polynomial is z2 − 3z + 2 = (z − 1)(z − 2) with roots
1, 2 the fundamental set for the homogeneous version is {et, e2t}.

We find

W [Y1, Y2] =

∣
∣
∣
∣

et e2t

et 2e2t

∣
∣
∣
∣
= e3t

and then we simply evaluate (some IBP here):

u1 = −
∫

e2tt
e3t

dt = −
∫
te−t dt = te−t − e−t + C Choose u1 = te−t − e−t

u2 =
∫

ett
e3t

dt =
∫
te−2t = − 1

2 te
−2t − 1

4e
−2t + C Choose u2 = − 1

2 te
−2t − 1

4e
−2t

Thus a particular solution to the nonhomogeneous version is

Yp(t) = u1Y1 + u2Y2 =
(
te−t − e−t

)
et +

(

−
1

2
te−2t −

1

4
e−2t

)

e2t =
1

2
t−

3

4

and the general solution to the nonhomogeneous version is

Y (t) =
1

2
t−

3

4
+ c1e

t + c2e
3t

Side Note: The Method of Undetermined Coefficients is much nicer for this problem.



Example: Consider (t2 + 1)y′′ − 2ty′ + 2y = (t2 + 1)2.

First we rewrite as y′′ − 2t
t2+1y

′ + 2
t2+1y = t2 + 1. It’s worth noting that even

though this looks uglier the only thing it affects that we need is the right side. We
have no technique for finding the fundamental set for the homogeneous version so I’ll
just give it to you, it’s {t, t2 − 1}.

We find

W [Y1, Y2] =

∣
∣
∣
∣

t t2 − 1
1 2t

∣
∣
∣
∣
= t2 + 1

and then we simply evaluate:

u1 = −
∫ (t2−1)(t2+1)

t2+1 dt = −
∫
t2 − 1 dt = − 1

3 t
3 + t+ C Choose u1 = − 1

3 t
3 + t

u2 =
∫ (t)(t2+1)

t2+1 dt =
∫
t dt = 1

2 t
2 + C Choose u2 = 1

2 t
2

Thus a particular solution to the nonhomogeneous version is

Yp(t) = u1Y1 + u2Y2 =

(

−
1

3
t3 + t

)

t+

(
1

2
t2
)

(t2 − 1) =
1

6
t4 +

1

2
t2

and the general solution to the nonhomogeneous version is

Y (t) =
1

6
t4 +

1

2
t2 + c1t+ c2(t

2 − 1)

We can make this a pretty nice IVP by adding the condition Y (1) = 0 and Y ′(1) = 1.
Since Y ′(t) = 2

3 t
3 + t+ c1 + 2c2t we then have

Y (1) =
1

6
+

1

2
+ c1 = 0

Y ′(1) =
2

3
+ 1 + c1 + 2c2 = 1

so then c1 = − 2
3 and c2 = 0 so the specific solution to the IVP is

Y (t) =
1

6
t4 +

1

2
t2 −

2

3
t



MATH 246: Chapter 2 Section 8: Mechanical Vibration
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Main Topics:
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• Notes

• Unforced and Undamped Motion

• Unforced and Damped Motion

• Forced Motion

1. Introduction

Important: Positive is up and negative is down.

Imagine a spring hanging with no weight on it. We then attach a mass m which stretches the
spring a distance of yR < 0. We are now at the rest point. At this point the force of gravity is
mg (negative since g < 0, think g = −9.8 if it helps) and the force of the spring by Hooke’s Law
is −kyR (the spring force is upwards so we negate against yR < 0). Consequently because we are
at rest we have mg + (−kyR) = 0 and so mg = kyR.

Now then, imagine the object and spring system is in motion and at any time t the displacement
from the rest point is given by y(t). At any instant now there could be multiple forces acting on
the object:

Gravity mg Acting downwards with g < 0.
Spring −k(y + yR) Acting against the displacement.
Damping −γy′ Acting against and proportional to velocity, here γ > 0.
External f(t) Some other external force.

When we put these all together we get:

FTot = FGrav + FSpring + FDamping + FExternal

my′′ = mg − k(y + yR)− γy′ + f(t)

my′′ = kyr − ky − kyR − γy′ + f(t)

my′′ = −ky − γy′ + f(t)

We finall rewrite this as:

my′′ + γy′ + ky = f(t)

If this doesn’t look familiar then you’ve been asleep!

2. A Few Notes

(a) In the Metric system we may either have length, time, mass and force in meters, seconds,
kilograms and newtons (newton = kg · meter/s2) respectively, or in centimeters, seconds,
grams and dynes (dyne = g · cm/s2) respectively. In the British system we may have feet,
seconds, slugs and pounds (lb = slug · ft/s2). Note also in the British system that weight is
also in pounds with lb = slug · gravity.

(b) If k is not given we may need to find it using mg = kyR. We would be given the mass m of
the object and the displacement yR. We can then find k. For example if an object of mass
2 kilograms displace a spring 0.5 meters downwards then (2)(−9.8) = k(−0.5).

(c) If γ is not given we may need to find it using FDamping = γy′. We would be given the
damping force for a certain velocity. For example if a mass traveling at 0.1m/s upwards
invokes a damping force of 0.3N downwards then −0.3 = −γ(0.1).



3. Unforced and Undamped

The simplest situation is when there is no external force and no damping. In this case we have

my′′ + ky = 0. The characteristic polynomial has roots 0± i
√

k
m

and so the solution is given by

y(t) = c1 cos

(

t

√

k

m

)

+ c2 sin

(

t

√

k

m

)

This can be rewritten using the Subtraction Formula for Cosine as

y(t) = A cos

(

t

√

k

m
− δ

)

where A =
√
c1 + c2 is the amplitude and δ satisfies cos δ = c1

A
and sin δ = c2

A
. The graph of this

makes good sense for a spring that’s bouncing up and down forever.

Example: A mass of 0.4kg hangs from a spring with coefficient k = 0.1. It is pulled
down 0.2m from resting and released at a rate of 0.3m/s downwards.

We have 0.4y′′ + 0.1y = 0 or y′′ + 0.25y = 0 with y(0) = −0.2 and y′(0) = −0.3.

The characteristic polynomial has roots 0 ± i
√

0.1
0.4 = 0 ± 0.5i. The general solution is

then
y(t) = c1 cos 0.5t+ c2 sin 0.5t

For the initial value observe y′(t) = −0.5c1 sin 0.5t + 0.5c2 cos 0.5t and so y(0) = c1 =
−0.2 and y′(0) = 0.5c2 = −0.3 so c2 = −0.6. This gives us the specific solution

y(t) = −0.2 cos 0.5t− 0.6 sin 0.5t

The amplitude is A =
√

(−0.2)2 + (0.6)2 =
√
0.4 ≈ 0.63 We can even draw a nice

sketch.

1

1 y = x

y = 1
2x

y = 1
3x

Sketch omitted, but this starts at (0,−0.2) with a slope of −0.3 and settles into a regular
oscillation.



4. Unforced with Damping

Now we have my′′ + γy′ + ky = 0. The characteristic polynomial has roots − γ
2m ±

√
γ2−4mk

2m . the
behavior of this depends strongly on γ2 − 4mk.

(a) Underdamped: When γ2 − 4mk < 0 (meaning the damping coefficient is small) we have
complex roots and our solution has both exponential and trigonometric components. The
function starts out oscillating but then the amplitude drops, limiting to zero.

Example: A mass of 0.4kg hangs from a spring with coefficient k = 0.1 in a fluid with
damping coefficient γ = 0.15. It is pulled down 0.2m from resting and released at a rate
of 0.3m/s downwards.

We have 0.4y′′ + 0.15y′ + 0.1y = 0 or y′′ + 0.375y′ + 0.25y = 0 with y(0) = −0.2 and
y′(0) = −0.3.

The characteristic polynomial has roots z =
−0.15±

√
(0.15)2−4(0.4)(0.1)

2(0.4) = −0.1875 ±
√
0.1375
0.8 i The general solution is then

y(t) = c1e
−0.1875t cos

(√
0.1375

0.8
t

)

= c2e
−0.1875t sin

(√
0.1375

0.8
t

)

The initial value calculation is much more complicated here but we can draw a reasonable
sketch anyway to make sure we understand what a function like this looks like.

Sketch omitted, but this starts at (0. − 0.2) with a slope of −0.3 and settles into an
oscillation wich reduces over time and limits to zero.



(b) Critically Damped: When γ2 − 4mk = 0 we have a real root of multiplicity two. This is
the special critically damped case. It corresponds to the smallest possible γ for which the
oscillation stops.

Example: A mass of 0.4kg hangs from a spring with coefficient k = 0.15625 in a fluid
with damping coefficient γ = 0.5. It is pulled down 0.7m and released with zero velocity.

We have 0.4y′′ + 0.5y′ + 0.15625y = 0 or y′′ + 1.25y′ + 0.390625y = 0 with y(0) = −0.7
and y′(0) = 0.

The characteristic polynomial z2 + 1.25y + 0.390625 has a single root of multiplicity 2
as it factors as (z + 0.625)2. The general solution is then

y(t) = c1e
−0.625t + c2te

−0.625t

The initial value calculation is much more complicated here but we can draw a reasonable
sketch anyway to make sure we understand what a function like this looks like.

Sketch omitted, but this starts at (0. − 0.7) with a slope of 0 and heads directly but
asymptotically to the t-axis.



(c) Overdamped: When γ2 − 4mk > 0 we have two real roots and the system is overdamped.

Example: A mass of 0.4kg hangs from a spring with coefficient k = 0.1 in a fluid with
damping coefficient γ = 0.5. It is pushed up 0.6m and released with zero velocity.

We have 0.4y′′+0.5y′+0.1y = 0 or y′′+1.25y′+0.25y = 0 with y(0) = 0.6 and y′(0) = 0.

The characteristic polynomial z2 + 1.25y + 0.25 factors as (z + 1)(z + 0.25) with roots
−1,−0.25 and hence the general solution is then

y(t) = c1e
−t + c2e

−0.25

For the initial value observe y′(t) = −c1e
−t − 0.25c2e

−0.25t and so y(0) = c1 + c2 = 0.6
and y′(0) = −c1− 0.25c2. This yields c2 = 0.8 and c1 = −0.2. This gives us the specific
solution

y(t) = −0.2e−t + 0.8e−0.25t

We can even draw a nice sketch.

Sketch omitted, but this starts at (0.0.6) with a slope of 0 and heads directly but
asymptotically to the t-axis.

(d) A Note on Critically Damped vs. Overdamped: These two functions look very similar.
The critical thing to note is that a damped system oscillates, an overdamped system doesn’t,
and a critically damped system doesn’t either but lies right on the edge of the other two.



5. Forced

With forced motions f(t) 6= 0 and all bets are off. We know we need to find a particular solution
Yp and then add the general solution to the homogeneous system. This makes sense because the
system is governed by both that forcing function and the usual spring motion stuff. In general
the behavior will look springy at the start, although the damping might suppress this a bit, and
in the long term (assuming damping) will look as if only the forcing function is acting on it.

Example: A mass of 0.4kg hangs from a spring with coefficient k = 0.1 in a fluid with
damping coefficient γ = 0.15. It is pulled up 0.2m from resting and released at a rate
of 0.3m/s downwards. An additional external force f(t) = 0.3 acts downwards on it.

We have 0.4y′′+0.15y′+0.1y = −0.3 or y′′+0.375y′+0.25y = −0.75 with y(0) = −0.2
and y′(0) = −0.3.

The Method of Undetermined Coefficients gives us one solution Yp(t) = 3. The homo-
geneous version is an earlier problem with general solution

c1e
−0.1875t cos

(√
0.1375

2
t

)

= c2e
−0.1875t sin

(√
0.1375

2
t

)

and hence the general solution to our forced problem is

Y (t) = −3 + c1e
−0.1875t cos

(√
0.1375

2
t

)

= c2e
−0.1875t sin

(√
0.1375

2
t

)

Notice that in the long term the exponentials take complicated part to zero so that
lim
t→∞

Y (t) = 3. So in the long term only the forcing function remains acting on it.

The initial value calculation is much more complicated here but we can draw a reasonable
sketch anyway to make sure we understand what a function like this looks like.

Sketch omitted, but this starts at (0, 0.2) with slope −0.3 and oscillates with reducing
amplitude as it settles down and limits to y = −3.
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• Solving IVPs

• Step Functions with Laplace Transforms

1. Introduction: Laplace transforms are a way of changing one function into another function.
Basically we start with a function of t and change it to a function of s. We can also do the
reverse. The Laplace transform has some really useful properties which will help us solve initial
value problems.

2. Formal Definition: If f(t) is a function then the Laplace transform of this function is formally
defined by:

L [y(t)] (s) =

∫
∞

0

y(t)e−st dt = lim
b→∞

∫ b

0

y(t)e−st dt

For an unknown y(t) we will often write L [y(t)] or just L [y] for readability. This formal definition
is used to build a set of rules and the rules are what we’ll use.

Example: If y(t) = 1 then we get:

L [1] =

∫
∞

0

1e−st dt

= lim
b→∞

∫ b

0

e−st dt

= lim
b→∞

−
1

s
e−st

∣
∣
∣
∣
∣

b

0

= lim
b→∞

−
1

s
e−sb +

1

s
e−s(0)

=
1

s

Thus L [1] = 1
s .



Example: If y(t) = t then we get:

L [t] =

∫
∞

0

te−st dt

= lim
b→∞

∫ b

0

te−st dt

= lim
b→∞

t

(

−
1

s

)

e−st

∣
∣
∣
∣
∣

b

0

−

∫ b

0

(

−
1

s

)

e−st dt

= lim
b→∞

t

(

−
1

s

)

e−st

∣
∣
∣
∣
∣

b

0

−
1

s2
e−st

∣
∣
∣
∣
∣

b

0

= lim
b→∞

[

−
b

s
e−sb − 0

]

−

[
1

s2
e−sb −

1

s2

]

=
1

s2

Thus L [1] = 1
s2 .

3. Function Rules

Using this same approach we can prove the following rules for common functions:

Function Example

L [0] = 0 n/a

L [c] = c
s L [42] = 42

s

L [tn] = n!
sn+1 L

[
t3
]
= 3!

s4

L [eat] = 1
s−a L

[
e5t

]
= 1

s−5

L [cos(bt)] = s
s2+b2 L [cos(7t)] = s

s2+49

L [sin(bt)] = b
s2+b2 L [sin(7t)] = 7

s2+49

L [eattn] = n!
(s−a)n+1 L

[
e2tt4

]
= 4!

(s−2)5

L [eat cos(bt)] = s−a
(s−a)2+b2 L

[
e5t cos(3t)

]
= s−5

(s−5)2+9

L [eat sin(bt)] = b
(s−a)2+b2 L

[
e5t sin(3t)

]
= 3

(s−5)2+9

L [af(t) + bg(t)] = aL [f(t)] + bL [g(t)] L [2 + 5t] = L [2] + 5L [t] = 2
s + 5

(
1
s2

)

Notation: Sometimes if a function is denoted y(t) then some sources use Y (s) instead of L [y(t)]
for convenience. I will tend to not do this much.



4. Reversing If we start with L [y] we can also work in reverse. Here are some examples with
comments because sometimes we need to manipulate the function first. This can also be written
with inverse notation.

Example: If L [y] = 2
s then y(t) = 2. aka L−1

[
2
s

]
= s.

Example: If L [y] = 1
s5 then first we rewrite L [y] = 1

4!

(
4!
s5

)
and then we see y(t) = 1

24 t
4.

aka L−1
[

1
s5

]
= 1

24 t
4.

Example: If L [y] = 1
s+4 we think of it as L [y] = 1

s−(−4) then y(t) = e−4t.

Example: If L [y] = −18
s2+9 then first rewrite to get L [y] = −6

(
3

s2+9

)

and then we see

y(t) = −6 sin(3t).

Example: If L [y] = 2
s2+s then first we see L [y] = 2

s(s+1) and then we need to rewrite

with partial fractions first and then following this we need a bit more rewriting to fit

the formulas so L [y] = 2
s − 2

s+1 = 2
s − 2

(
1

s−(−1)

)

, and then we see y(t) = 2− 2e−t.

Example: If L [y] = 4s+3
s2+25 then we need to break it up and rewrite a little to fit the

formulas:
L [y] = 4s+3

s2+25 = 4s
s2+25 + 3

s2+25 = 4
(

s
s2+25

)

+ 3
5

(
5

s2+25

)

and then we see that

y(t) = 4 cos(5t) + 3
5 sin(5t).

Example: If L [y] = s+1
s2−4s+5 then the denominator doesn’t factor so instead we

complete the square and then do a bit more rewriting to get L [y] = s+1
(s−2)2+1 =

s−2
(s−2)2+1 + 3

(s−2)2+1 and then we see that y(t) = e2t cos(t) + 3e2t sin(t).



5. Derivative Rules

It turns out that the Laplace transfer is nice with derivatives of functions too.

Example: Observe that:

L [y′(t)] = lim
b→∞

∫ b

0

y′(t)e−st dt

= lim
b→∞

y(t)e−st

∣
∣
∣
∣
∣

b

0

+ s

∫ b

0

y(t)e−st dt

= lim
b→∞

[
y(b)e−sb − y(0)

]
+ sL [y(t)]

= −y(0) + sL [y(t)]

= sL [y(t)]− y(0)

In general we have the following pattern for an unknown y(t):

L [y′] = sL [y(t)]− y(0) = sL [y]− y(0)

L [y′′] = s2L [y(t)]− sy(0)− y′(0) = s2L [y]− sy(0)− y′(0)

L [y′′′] = s3L [y(t)]− s2y(0)− sy′(0)− y′′(0) = s3L [y]− s2y(0)− sy′(0)− y′′(0)

...
...

For example if y(t) is unknown but we know y(0) = 7 and y′(0) = −3 then the second rule tells
us that

L [y′′] = s2L [y]− sy(0)− y′(0)

= s2L [y]− s(7)− (−3)

= s2L [y]− 7s+ 3

We’ll see very soon why this is significant.



6. Solving Initial Value Problems

Laplace Transforms are incredibly useful for dealing with IVPs when tI = 0. Other values of tI
can be dealt with using a function shift but we won’t deal with those here.

When dealing with such an initial value problem our approach will be the following:

(a) Take the Laplace transform of each side.

(b) Apply the rules for functions and for derivatives to eliminate all the t, all the derivatives and
substitute all the initial values.

(c) Solve the result for L [y].

(d) Reverse the Laplace transform to get the solution y(t).

Example: Suppose we have y′ = 3 with y(0) = 1. We do the following:

y′ = 3

L [y′] = L [3]

sL [y]− y(0) =
3

s

sL [y]− 1 =
3

s

sL [y] =
3

s
+ 1

L [y] =
3

s2
+

1

s
y(t) = 3t+ 1

And we’ve solved it! Notice that you really need to understand how the various tables
are being used here. The Laplace tranform table is used at the beginning and end and
the derivative rules are also used early on.



Example: Suppose we have y′′ − 2y′ − 3y = 0 with y(0) = 1 and y′(0) = 4. We do the
following:

y′′ − 2y′ − 3y = 0

L [y′′]− 2L [y′]− 3L [y] = L [0]
(
s2L [y]− sy(0)− y′(0)

)
− 2 (sL [y]− y(0))− 3L [y] = 0

s2L [y]− s− 4− 2sL [y] + 2− 3L [y] = 0

L [y] (s2 − 2s− 3)− s− 2 = 0

L [y] (s2 − 2s− 3) = s+ 2

L [y] =
s+ 2

s2 − 2s− 3

L [y] =
s+ 2

(s− 3)(s+ 1)

Now we need to do some manipulation with partial fractions:

s+ 2

(s− 3)(s+ 1)
=

A

s− 3
+

B

s+ 1

s+ 2 = A(s+ 1) +B(s− 3)

At this point s = −1 gives us B = −1/4 and s = 3 gives us A = 5/4. Back to our
problem with the most recent line rewritten:

L [y] =
s+ 2

(s− 3)(s+ 1)

L [y] =
5/4

s− 3
+

−1/4

s+ 1

L [y] =
5

4

(
1

s− 3

)

−
1

4

(
1

s− (−1)

)

y(t) =
5

4
e3t −

1

4
e−t



Example: Suppose we have y′′ + 4y = 2t with y(0) = 1 and y′(0) = 0. We do the
following:

y′′ + 4y = 2t

L [y′′] + 4L [y] = L [2t]

s2L [y]− sy(0)− y′(0) + 4L [y] =
2

s2

s2L [y]− s− 0 + 4L [y] =
2

s2

L [y] (s2 + 4) =
2

s2
+ s

L [y] =
2

s2(s2 + 4)
+

s

s2 + 4

This doesn’t look so nice. The second part is okay (it’s from cos) but the first part is
not in our table. Instead we need to break it up with partial fractions:

2

s2(s2 + 4)
=

A

s
+

B

s2
+

Cs+D

s2 + 4

2 = As(s2 + 4) +B(s2 + 4) + (Cs+D)s2

2 = (A+ C)s3 + (B +D)s2 + 4As+ 4B

Comparing coefficients gives us A + C = 0, B + D = 0, 4A = 0 and 4B = 2 so that
B = 1/2, A = 0, D = −1/2 and C = 0 and so back our process with the most recent
line rewritten:

L [y] =
2

s2(s2 + 4)
+

s

s2 + 4

L [y] =
1/2

s2
+

−1/2

s2 + 4
+

s

s2 + 4

L [y] =
1

2

(
1

s2

)

−
1

4

(
2

s2 + 4

)

+
s

s2 + 4

y(t) =
1

2
t−

1

4
sin(2t) + cos(2t)

Compare this to before where we’d need to find the general solution to the homogeneous
version of the differential equation, also find a specific solution to the nonhomogeneous
version, add them, then use the initial values to find the constants. This way is signifi-
cantly faster.



Sometimes it’s good practice just to do the first part of a problem:

Example: Find the Laplace Transform of the solution to the initial value problem
y′′ + y′ − 3y = t+ e2t cos(3t) with y(0) = −1 and y′(0) = 2.
Here all we need to get to is L [y]. We do the following:

y′′ + y′ − 3y = t+ e2t cos(3t)

L [y′′] + L [y′]− 3L [y] = L [t] + L
[
e2t cos(3t)

]

s2L [y]− sy(0)− y′(0) + sL [y]− y(0)− 3L [y] =
s− 2

(s− 2)2 + 9

s2L [y] + s− 2 + sL [y] + 1− 3L [y] =
2− s

(s− 2)2 + 9

L [y] (s2 + s− 3) + s− 1 =
2− s

(s− 2)2 + 9

L [y] (s2 + s− 3) =
2− s

(s− 2)2 + 9
+ 1− s

L [y] =
2− s

((s− 2)2 + 9)(s2 + s− 3)
+

1− s

s2 + s− 3

To finish, this would need to undergo a partial fractions decomposition and then the
rules would need to be applied.



7. Step Functions The most basic step function is the function which returns 0 up until (but not
including) t = 0 and then 1 after that. More specifically we have

u(t) =

{

0 t < 0

1 t ≥ 0

There are other options. If we want to use a value other than 0 we denote it uc(t):

uc(t) =

{

0 t < c

1 t ≥ c

Step functions are useful because they turn other functions on and off. For example the product
function uπ(t) sin(t− π) is 0 for t < π and sin(t− π) for t ≥ π.

It may seem odd that we have sin(t − π) here rather than just sin(t) but there’s a reason why
this will usually happen. When a function “kicks in” at a certain t-value this usually means that
before that t-value the function is 0 and then at that t-value the function begins as though 0 were
plugged into it. So for example uπ(t) sin(t− π) equals 0 until t = π at which point the sin(t− π)
part starts behaving as if 0 were plugged in (because of the t− π in there).

Example: Suppose a function equals 0 until t = π/4 and then starts behaving like the
sine function, meaning like the sine function does at t = 0. This new function would be
uπ/4(t) sin(t− π/4).

Example: Suppose a function equals 0 until t = 3 and then starts behaving like the
exponential function et, meaning like ths exponential function does at t = 0. This new
function would be u3(t)e

t−3.

8. Laplace Transforms and Step Functions

Step functions have the following Laplace transform related behavior:

L [uc(t)f(t− c)] = e−csL [f(t)]

This is a bit confusing so for the forward and backwards directions think:

Forward: Pull out the uc(t) which changes to e−cs and change all t− c to t then continue.

Example: L
[
u3(t)(t− 3)5

]
= e−3sL

[
t5
]
= e−3s

(
5!
s6

)

Example: L [uπ(t) sin(t− π)] = e−πsL [sin(t)] = e−πs
(

1
s2+1

)

Example: L
[
u2(t)e

4(t−2)(t− 2)5
]
= e−2sL

[
e4tt5

]
= e−2s

(
5!

(s−4)6

)

Backward: For L [y] = e−csJ(s) first find j(t) with L [j(t)] = J(s), replace the t by t − c and
put a uc(t) in front.

Example: If L [y] = e−5s
(

s
s2+49

)

then we note L [cos(7t)] = s
s2+49 , replace the t by

t− 5 and put u5(t) in front, yielding y(t) = u5(t) cos(7(t− 5)).

Example: If L [y] = e3s
(
5!
s6

)
then we note L

[
t5
]
= 5!

s6 , replace the t by t − (−3) and
put u(−3)(t) in front, yielding y(t) = u(−3)(t)(t+ 3)5.

Example: If L [y] = e−5s
(

6!
(s−3)7

)

then we note L
[
e3tt6

]
= 6!

(s−3)7 , replace the t by

t− 5 and put u5(t) in front, yielding y(t) = u5(t)e
3(t−5)(t− 5)7.



This can then be tied into initial value problems.

Example: Suppose y′ − 2y = f(t) where

f(t) =

{

0 t < 3

t− 3 t ≥ 3

and where y(0) = 0.
We first note that f(t) = u3(t)(t− 3) and then proceed:

y′ − 2y = u3(t)(t− 3)

L [y′]− 2L [y] = L [u3(t)(t− 3)]

sL [y]− y(0)− 2L [y] = e−3sL [t]

sL [y]− 2L [y] = e−3s

(
1

s2

)

L [y] (s− 2) = e−3s

(
1

s2

)

L [y] = e−3s

(
1

s2(s− 2)

)

...Partial Fractions Not Shown...

L [y] = e−3s

(
−1/4

s
−

1/2

s2
+

1/4

s− 2

)

︸ ︷︷ ︸

Yields: −
1
4
−

1
2
t+ 1

4
e2t

y(t) = u3(t)

(

−
1

4
−

1

2
(t− 3) +

1

4
e2(t−3)

)



Example: Suppose y′′ − y′ − 2y = f(t) where

f(t) =

{

0 t < 3

7 t ≥ 3

and where y(0) = 0 and y′(0) = −2.
We first note that f(t) = 7u3(t) and then proceed:

y′′ − y′ − 2y = 7u3(t)

L [y′′]− L [y′]− 2L [y] = 7L [u3(t)]

s2L [y]− sy(0)− y′(0)− (sL [y]− y(0))− 2L [y] = 7e−3t

s2L [y]− s+ 2− sL [y]− 2L [y] = 7e−3t

L [y] (s2 − s− 2)− s+ 2 = 7e−3t

L [y] (s2 − s− 2) = 7e−3t + s− 2

L [y] = 7e−3t

(
1

s2 − s− 2

)

+
s− 2

s2 − s− 2

L [y] = 7e−3t

(
1

(s− 2)(s+ 1)

)

+
1

s+ 1

...Partial Fractions Not Shown...

L [y] = 7e−3t

(
1/3

s− 2
−

1/3

s+ 1

)

︸ ︷︷ ︸

Yields: 1
3
e2t− 1

3
e−t

+
1

s+ 1

y(t) = 7u3(t)

(
1

3
e2(t−3) −

1

3
e−1(t−3)

)

+ e−t



Example: Suppose y′′ − y′ = f(t) where

f(t) =

{

0 t < π/4

cos(t− π/4) t ≥ π/4

and wher y(0) = 0 and y′(0) = 0. We first note that f(t) = uπ/4(t) cos(t − π/4) and
then proceed:

y′′ − y′ = uπ/4 cos(t− π/4)

L [y′′]− L [y′] = L
[
uπ/4 cos(t− π/4)

]

(
s2L [y]− sy(0)− y′(0)

)
− (sL [y]− y(0)) = e−(π/4)sL [cos(t)]

s2L [y]− sL [y] = e−(π/4)s

(
s

s2 + 1

)

L [y] (s2 − s) = e−(π/4)s

(
s

s2 + 1

)

L [y] = e−(π/4)s

(
s

(s2 + 1)(s2 − s)

)

L [y] = e−(π/4)s

(
s

(s2 + 1)s(s− 1)

)

...Partial Fractions Not Shown...

L [y] = e−(π/4)s

(
− 1

2s−
1
2

s2 + 1
+

1
2

s− 1

)

L [y] = −
1

2
e−(π/4)s

(
s+ 1

s2 + 1
−

1

s− 1

)

L [y] = −
1

2
e−(π/4)s

(
s

s2 + 1
+

1

s2 + 1
−

1

s− 1

)

︸ ︷︷ ︸

Yields: cos(t)+sin(t)−et

y(t) = −
1

2
uπ/4(t)

(

cos(t− π/4) + sin(t− π/4)− e(t−π/4)
)



MATH 246: Chapter 3 Section 1: Intro to First Order Systems
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Main Topics:

• Introduction

• Rewriting Single Higher Order as Systems

• Multiple Tank Problems

1. Introduction

All that we’ve studied so far are DEs involving a single function y depending on a single variable
t. In the real world things can get far more complicated. As a classic example consider a predator-
prey situation. The rate of growth of the prey depends on both the number of prey and the number
of predators, possibly as well as time, and similarly for the rate of growth of the predators.

What we’ll study now are systems of first-order DEs. In the most basic case we’ll have two
functions x1(t) and x2(t) in which their derivatives x′1 and x′2 depend on both x1 and x2 themselves
and maybe on other functions of t.

The goal will be to find two functions x1(t) and x2(t) which simultaneously satisfy the system.

Example:

x′1 = x1 − x2

x′2 = −3x1 − x2

In this example the pair x1(t) = 2e−2t and x2(t) = 6e−2t form a solution.

Example:

x′1 = 2t2x1 − 3x2 + cos t

x′2 = x1 + 4tx2 − 2t

In this example a solution pair is not easy at all.

We can also have more functions and equations.

Example:

x′1 = 2x1 − 3x2 − x3 + cos t

x′2 = x1 + 4x2 − 2t

x′3 = −x1 + 20x2 − 7x3 + et

In addition we could have an initial value, which would mean an initial value for each of the
functions.

Example: Here is an IVP.

x′1 = tx1 − 3x2

x′2 = x1 + 4t2x2

With x1(0) = 2 and x2(0) = −3.



2. Rewriting Single Higher-Order as Systems

Single higher-order DEs can be rewritten as systems of first-order DEs. This may be useful as
we go on to develop methods of solving systems. The general idea for an nth order DE will be to
rewrite it as a system of n first-order DEs.

(a) When dealing with just the DE part it’s simple. For an nth order system we assign:

x1 = y

x2 = Dy

x3 = D2y

... =
...

xn−1 = Dn−2y

xn = Dn−1y

The first n− 1 then give us:

x′1 = x2

x′2 = x3

x′3 = x4

... =
...

x′n−1 = xn

We get one more x′n = ... from the DE because x′n = y(n), which we can find, and replacing
all the other derivatives by their respective xi.

Example: Consider D2y + tDy − 3y = t. We assign:

x1 = y

x2 = Dy

The first then gives us:
x′1 = y′ = Dy = x2

The differential equation gives us:

x′2 = D2y = t− tDy − 3y = t− tx2 − 3x1

Thus our final system is:

x′1 = x2

x′2 = −3x1 − tx2 + t



Example: Consider D3y − 2D2y + tDy − ety = sin t. We assign and get:

x1 = y

x2 = Dy

x3 = D2y

The first two of these give us:

x′1 = x2

x′2 = x3

The third x′3 = ... comes from the DE and is:

x′3 = D3y = 2D2y − tDy + ety + sin t = 2x3 − tx2 + etx1 + sin t

All together we have the system:

x′1 = x2

x′2 = x3

x′3 = 2x3 − tx2 + etx1 + sin t

(b) With Initial Values:

Initial values are easy to rewrite. Since we know y(tI), Dy(tI), ..., Dn−1y(tI) these just be-
come x1(tI), x2(tI), ..., xn(tI).

Example: Consider D2y + tDy − 3y = t again. Suppose we know that y(1) = 2 and
y′(1) = −3. We set x1 = y and x2 = Dy. Then we know x1(1) = 2 and x2(1) = y′(1) =
−3.



3. Tank Problems

A classic example of these are tank problems. Imagine two tanks containing salt water. Water
is being pumped into and out of these tanks in a variety of ways. For example in the following
scenario there are two tanks. The one on the left contains 100L and the one on the right 200L.
These quantities do not change in this example because the liters into each equals the gallons out.

100L 200L

4.5 L/hr 2.5 L/hr 0 g/L at 2.2 L/hr

2.0 g/L at 3.0 L/hr 1.0 L/hr 0.7 L/hr

The quantity 2.0 g/L at 3.0 L/hr indicates that salt water with that density is flowing into the
left tank at that rate, and the quantity 0 g/L at 2.2 L/hr indicates the same for the right tank.

The other quantities do not have densities becase they are assumed to be mixtures from the tank.

Imagine now that x1 is the amount of salt in the left tank and x2 is the amount of salt in the
right tank, each at time t. Then the density of salt in the left tank is x1

100 and in the right tank is
x2

200 . The entire scenario is then modeled by the system:

x′1 = [Rate of Salt In] − [Rate of Salt Out]

x′2 = [Rate of Salt In] − [Rate of Salt Out]

which is:

x′1 = +(2)(3) + (x2/200)(2.5) − (x1/100)(4.5) − (x1/100)(1)

x′2 = +(x1/100)(1) + (0)(2.2) − (x2/200)(0.7) − (x2/200)(2.5)

This simplifies to:

x′1 = −0.055x1 + 0.0125x2 + 6

x′2 = 0.01x1 − 0.0475x2

Suppose in addition we know that at time t = 0 there is 10g of salt in the left tank and 20g of
salt in the right tank. Then we can add in the initial value x1(0) = 10 and x2(0) = 20.
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• The Fundamental Matrix

• Comment on Nonhomogeneous

1. Matrix and Vector Notation for Systems of First Order Linear DEs

Consider the following:

• A first order linear system of differential equations may be written:

x̄′ = A(t)x̄+ f̄(t)

• This system is homogeneous when f̄(t) = 0̄ and we say the system has constant coefficients
when the matrix A(t) is all constants.

• An initial value can then be written as x̄(tI) = x̄I ,

• The solution can then be given as a single x̄.

Example: Consider the following initial value problem:

x′

1 = 3x1 + 2tx2 + t x1(0) = 1

x′

2 = t2x1 + 3x2 x2(0) = −2

This can be rewritten as:
[

x′

1

x′

2

]

︸ ︷︷ ︸

x̄′

=

[
3 2t
t2 3

]

︸ ︷︷ ︸

A(t)

[
x1

x2

]

︸ ︷︷ ︸

x̄

+

[
t
0

]

︸ ︷︷ ︸

f̄(t)

with

[
x1(0)
x2(0)

]

︸ ︷︷ ︸

x̄(0)

=

[
1

−2

]

︸ ︷︷ ︸

x̄I

Thus more simply:

x̄′ =

[
3 2t
t2 3

]

x̄+

[
t
0

]

with x̄(0) =

[
1

−2

]

Example: Consider the following solution:

x̄′ =

[
3 2
2 3

]

x̄

One solution to this is:

x̄ =

[
e5t

e5t

]

This can be checked with a matrix calculation:
[

3 2
2 3

]

x̄ =

[
3 2
2 3

] [
e5t

e5t

]

=

[
3e5t + 2e5t

2e5t + 3e5t

]

=

[
5e5t

5e5t

]

= x̄′



2. Theory for Homogeneous - Fundamental Sets and Fundamental Matrices

Note: In what follows I’ve written n = 2 to mean that I’m giving a specific example that general-
izes. You could substitute n = 3, 4, ... and the theory would still be good. In cases where it’s not
clear what happens for 3,4,... I’ve said more.

Theory: A homogeneous system of n = 2 DEs has a fundamental pair/set consisting of n = 2
solutions x̄1 and x̄2 (more if n ≥ 3)

A fundamental set has nonzero Wronskian where

W [x̄1, x̄2] = |x̄1 x̄2|

That determinant is just found by dumping the vectors x̄1 and x̄2 together in in a matrix and
going from there.

When we have a fundamental pair/set the matrix used to determine the Wronskian is called the
fundamental matrix and is usually denoted Ψ or Ψ(t).

The general solution to the system then consists of all linear combinations of those n = 2 solutions,
this can be written several ways:

x̄(t) = c1x̄1 + c2x̄2 = [x̄1 x̄2]

[
c1
c2

]

= Ψ(t)

[
c1
c2

]

= Ψ(t)c̄

Example: Consider the system

x̄′ =

[
t2 2t− t4

1 −t2

]

x̄

This has solutions (calculation omitted) {x̄1, x̄2} =

{[
1 + t3

t

]

,

[
t2

1

]}

.

These form a fundamental pair because W [x̄1, x̄2] =

∣
∣
∣
∣

1 + t3 t2

t 1

∣
∣
∣
∣
= 1 6≡ 0.

Consequently the general solution to the system is:

x̄(t) = c1

[
1 + t3

t2

]

+ c2

[
t2

1

]

=

[
c1(1 + t3) + c2t

2

c1t
2 + c2

]

=

[
1 + t3 t2

t2 1

]

︸ ︷︷ ︸

Ψ(t)

[
c1
c2

]

︸ ︷︷ ︸

c̄

It’s worth noting that if we go back and think of the original problem as:

x′

1 = t2x1 + (2t− t4)x2

x′

2 = x2 − t2x2

Then the general solution is:

x1 = c1(1 + t3) + c2t
2

x2 = c1t+ c2



Example 1: Consider the system

x̄′ =

[
3 2
2 3

]

x̄

This has solutions (calculation omitted) {x̄1, x̄2} =

{[
e5t

e5t

]

,

[
et

−et

]}

.

These form a fundamental pair because W [x̄1, x̄2] =

∣
∣
∣
∣

e5t et

e5t −et

∣
∣
∣
∣
= −2e6t 6≡ 0.

Consequently the general solution to the system is:

x̄(t) = c1

[
e5t

e5t

]

+ c2

[
et

−et

]

=

[
c1e

5t + c2e
t

c1e
5t − c2e

t

]

=

[
e5t et

e5t −et

]

︸ ︷︷ ︸

Ψ(t)

[
c1
c2

]

︸ ︷︷ ︸

c̄

If we turn this into an initial value problem with the initial condition:

x̄(0) =

[
1
2

]

Then we can find the specific solution using a simple matrix calculation:

x̄(0) = Ψ(0)c̄
[

1
2

]

=

[
1 1
1 −1

]

c̄

c̄ =

[
1 1
1 −1

]
−1 [

1
2

]

c̄ =
1

−2

[
−1 −1
−1 1

] [
1
2

]

c̄ = −
1

2

[
−3
1

]

c̄ =

[
3/2

−1/2

]

Hence the specific solution can be written a few ways:

x̄(t) = Ψ(t)c̄ =

[
e5t et

e5t −et

] [
3/2

−1/2

]

=
3

2

[
e5t

e5t

]

−
1

2

[
et

−et

]

=

[
3
2e

5t − 1
2e

t

3
2e

5t + 1
2e

t

]

It’s worth noting that if we go back and think of the original problem as the IVP:

x′

1 = 3x1 + 2x2 x1(0) = 1

x′

2 = 2x1 + 3x2 x2(0) = 2

Then the specific solution is:

x1 =
3

2
e5t −

1

2
et

x2 =
3

2
e5t +

1

2
et



3. Natural Fundamental Sets and Matrices

The natural fundamental matrix associated to a specific tI is a specific fundamental matrix which
is incredibly useful.

Suppose we solve the two initial value problems:

x̄′ = Ax̄ with x̄(tI) =

[
1
0

]

−→ call this solution x1

and

x̄′ = Ax̄ with x̄(tI) =

[
0
1

]

−→ call this solution x2

we get what are known together as the natural fundamental set associated to tI and if we put these
together in a matrix we get the natural fundamental matrix associated to tI which is denoted Φ(t)
or just Φ. There is only one of these for a given tI .

Example: Consider the system:

x̄′ =

[
3 2
2 3

]

x̄

This has natural fundamental matrix associated to tI = 0 of:

Φ(t) =

[
1
2e

5t + 1
2e

t 1
2e

5t − 1
2e

t

1
2e

5t − 1
2e

t 1
2e

5t + 1
2e

t

]

This matrix Φ(t) is incredibly useful. To see this, suppose we have a system given by

x̄′ = A(t)x̄

If we have the natural fundamental matrix Φ(t) assoicated to some tI and we wish to solve the
initial value problem with:

x̄(tI) = x̄I =

[
a
b

]

Consider the vector:

x̄(t) = Φ(t)x̄I

Observe that by definition of matrix/vector multiplication we have:

x̄(t) = Φ(t)x̄I = [x̄1 x̄2]

[
a
b

]

= ax̄1 + bx̄2

Since x̄ is a linear combination of x̄1 and x̄2 it is a solution to the DE. Moreover observe that:



x̄(tI) = Φ(tI)x̄I = Φ(tI)

[
a
b

]

= ax̄1(tI) + bx̄2(tI) = a

[
1
0

]

+ b

[
0
1

]

=

[
a
b

]

= x̄I

It follows that the solution to the IVP is simply given by:

x̄(t) = Φ(t)x̄I

This is handy when we need to solve repeated initial value problems with the same tI .

Example:

Revisit the system:

x̄′ =

[
3 2
2 3

]

x̄

We saw this has natural fundamental matrix associated to tI = 0 of:

Φ(t) =

[
1
2e

5t + 1
2e

t 1
2e

5t − 1
2e

t

1
2e

5t − 1
2e

t 1
2e

5t + 1
2e

t

]

So now we can throw out solutions to IVPs easily:

• If we have: x̄(0) =

[
1
2

]

Then the solution is:

x̄ = Φ(t)

[
1
2

]

=

[
1
2e

5t + 1
2e

t 1
2e

5t − 1
2e

t

1
2e

5t − 1
2e

t 1
2e

5t + 1
2e

t

] [
1
2

]

=

[
3
2e

5t − 1
2e

t

3
2e

5t + 1
2e

t

]

• If we have: x̄(0) =

[
4

−2

]

Then the solution is:

x̄ = Φ(t)

[
4

−2

]

=

[
1
2e

5t + 1
2e

t 1
2e

5t − 1
2e

t

1
2e

5t − 1
2e

t 1
2e

5t + 1
2e

t

] [
4

−2

]

=

[
e5t + 3et

e5t − 3et

]

What’s even better is that if we have any fundamental matrix Ψ(t) then we can find the natural
fundamental matrix for any tI by calculating:

Φ(t) = Ψ(t)Ψ(tI)
−1



Example:

The system:

x̄′ =

[
0 1

−1 0

]

x̄

has fundamental matrix:

Ψ(t) =

[
sinx cosx
cosx − sinx

]

Suppose we wish to solve the IVP with x̄(0) =

[
2
7

]

.

We first find Φ associated to tI = 0 by doing the following:

Φ = Ψ(t)Ψ(0)−1

=

[
sinx cosx
cosx − sinx

] [
0 1
1 0

]
−1

=

[
sinx cosx
cosx − sinx

]
1

−1

[
0 −1

−1 0

]

=

[
cosx sinx

− sinx cosx

]

Then the solution to the IVP is given by:

x̄ = Φx̄I =

[
cosx sinx

− sinx cosx

] [
2
7

]

=

[
2 cosx+ 7 sinx

−2 sinx+ 7 cosx

]
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1. Introduction:

It’s far easier to manage systems of differential equations when we can rephrase them in the
language of matrices and vectors. To that end, here are the essentials.

2. Basic Definitions:

(a) A matrix is a rectangular array of numbers. It has size m × n if there are m rows and n
columns. Matrices are typically denoted using capital letters:

Example: Here is a 3× 4 matrix:

A =





1 3 −1 0
0 5 0 17
2 2 −7 3





(b) Most of the matrices in this class will be square, meaning they have the same number of rows
and columns. Mostly we’ll deal with 2× 2 and 3× 3 matrices.

(c) The identity matrix In is the square n× n matrix with 1s on the main diagonal (upper-left
to lower right) and 0s elsewhere. When the size is clear from context we just write I.

Example:

I3 =





1 0 0
0 1 0
0 0 1





(d) The zero matrix is matrix of all zeros.

(e) A vector is a matrix which is a single column. Vectors are usually denoted in lower-case with
a bar over the letter.

Example: ā =





1
−3
2







3. Combining Matrices and Vectors:

(a) We can add matrices and vectors by adding matching entries provided they both have the
same size.

Example: For example:

[

1 2
3 4

]

+

[

−1 0
6 2

]

=

[

1− 1 2 + 0
3 + 6 4 + 2

]

=

[

0 2
9 8

]

(b) We can multiply an n× n matrix A by a vector x̄ with n entries to get a new vector with n
entries. The formal definition of this is that we take the linear combination of the columns of
A using the weights in x̄. More informally we do this by multiplying each row of the matrix
by the vector (element by element and add). This is easier to see:

Example: We have:





1 2 −3
0 4 7
8 −1 5









5
3
2



 = 5





1
0
8



+ 3





2
4

−1



+ 2





−3
7
5





=





(1)(5) + (2)(3) + (−3)(2)
(0)(5) + (4)(3) + (7)(2)

(8)(5) + (−1)(3) + (5)(2)





=





5
26
47





(c) We can multiply an n×n matrix by another n×n matrix by multiplying the first matrix by
each of the columns in the second matrix as if it were just a vector, then taking these new
vectors an putting them together in a new matrix.

Example: Here it is with lots of brackets to help you see what’s going on:

[

2 1
4 3

] [

−1 3
5 9

]

=

[[

2 1
4 3

] [

−1
5

] [

2 1
4 3

] [

3
9

]]

=

[[

(2)(−1) + (1)(5)
(4)(−1) + (3)(5)

] [

(2)(3) + (1)(9)
(4)(3) + (3)(9)

]]

=

[

3 15
9 39

]

(d) It’s almost always the case that for matrices A and B that AB 6= BA.

(e) The identity matrix acts like the number 1 in that for any matrix A we have:

AI = IA = A



4. Determinants:

(a) The determinant of a matrix, denoted detA or by putting the matrix in vertical bars instead
of brackets, is a number calculated from the matrix. We’ve seen this for 2 × 2 and 3 × 3
matrices.

(b) Properties include:

• A matrix A has an inverse if and only if detA 6= 0.

• For a 2× 2 case det

[

a b
c d

]

=

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad− bc.

5. Inverses:

(a) The inverse of an n×nmatrix A is another matrix denoted A−1 such that AA−1 = A−1A = I.
It’s like a “reciprocal” for matrices.

(b) For the 2× 2 size there is a formula:

[

a b
c d

]

−1

=
1

ad− bc

[

d −b
−c a

]

Example: For example:

[

1 3
2 −2

]

−1

=
1

(1)(−2)− (3)(2)

[

2 −3
1 2

]

=
1

−8

[

2 −3
1 2

]

=

[

−1/4 3/8
−1/8 −1/4

]

(c) Properties include:

•
(

A−1
)

−1

= A

• (AB)−1 = B−1A−1

• (αA)−1 = 1

α
A−1

• We have det
(

A−1
)

= 1/(detA).

6. Transpose and Complex Conjugate:

(a) The transpose of an n × n matrix A, denoted AT , is found by reflecting the matrix in its
main diagonal.

Example: We have:




1 2 −3
0 4 7
8 −1 5





T

=





1 0 8
2 4 −1
−3 7 5





(b) A matrix may have complex numbers in it, in which case its comples conjugate denoted either
Ā or Ac, is found by taking the complex conjugate of each entry.

Example: We have:

[

1− 2i 5
5 + i 7 + 8i

]C

=

[

1 + 2i 5
5− i 7− 8i

]



7. Eigenstuff:

If we have a matrix, the determinant is the most important number associated to it. After the
determinant the next most important items are eigenvalues and eigenvectors.

(a) If A is an n × n matrix, an eigenvalue of A is a number λ with the property that there is
some v̄ 6= 0̄ such that Av̄ = λv̄. The vector v̄ is then an eigenvector associated to λ and we
say that (λ, v̄) is an eigenpair of A.

Example: Observe that:

[

2 1
1 2

] [

1
1

]

=

[

3
3

]

= 3

[

1
1

]

so we would say that λ = 3 is an eigenvalue,

[

1
1

]

is an eigenvector and

(

3,

[

1
1

])

is

an eigenpair for the matrix

[

2 1
1 2

]

.

(b) Any nonzero multiple of an eigenvector is also an eigenvector, so in the above example

[

2
2

]

,
[

17
17

]

and

[

−7
−7

]

are all eigenvectors for the same eigenvalue.

(c) If we have a complex eigenpair (λ, v̄) then (λ̄, ¯̄v) is also an eigenpair.

(d) Given an n×n matrix A, the value λ will be an eigenvalue if and only if there is some v̄ 6= 0̄
such that

Av̄ = λv̄

We can manipulate this:

λv̄ −Av̄ = 0̄

λIv̄ −Av̄ = 0̄

(λI −A) v̄ = 0̄

This will have a nontrivial solution precisely when:

det(λI −A) = 0

So what we do is we define the characteristic polynomial of A as:

p(z) = det(zI −A)

Then we know that the eigenvalues of A are the roots of this characteristic polynomial.



Example: To find the eigenvalues of

A =

[

3 2
2 3

]

we find

p(z) = det(zI −A)

= det

(

z

[

1 0
0 1

]

−

[

3 2
2 3

])

= det

([

z 0
0 z

]

−

[

3 2
2 3

])

= det

[

z − 3 −2
−2 z − 3

]

= (z − 3)(z − 3)− 4

= z2 − 6z + 5

= (z − 5)(z − 1)

The eigenvalues are then the roots so λ1 = 5 and λ2 = 1.

Example: To find the eigenvalues of

A =

[

4 −1
1 2

]

we find

p(z) = det(zI −A)

= det

(

z

[

1 0
0 1

]

−

[

4 −1
1 2

])

= det

([

z 0
0 z

]

−

[

4 −1
1 2

])

= det

[

z − 4 1
−1 z − 2

]

= (z − 4)(z − 2) + 1

= z2 − 6z + 9

= (z − 3)2

The only eigenvalue is the root λ = 3. However this multiplicity counts, so we can think
λ1 = 3 and λ2 = 3.



Example: To find the eigenvalues of

A =

[

3 2
−2 3

]

we find

p(z) = det(zI −A)

= det

(

z

[

1 0
0 1

]

−

[

3 2
−2 3

])

= det

([

z 0
0 z

]

−

[

3 2
−2 3

])

= det

[

z − 3 −2
2 z − 3

]

= (z − 3)(z − 3) + 4

= z2 − 6z + 13

This does not factor so we use the quadratic formula:

z =
6±

√

(−6)2 − 4(1)(13)

2
= 3± 2i

The eigenvalues are then λ1 = 3 + 2i and λ2 = 3− 2i.



(e) Once we find the eigenvalues we take each eigenvalue z = λ and solve the matrix equation
Av̄ = λv̄, or Av̄ − λv̄ = 0̄, or (A− λI)v̄ = 0̄. This can be fairly intensive for large cases. For
the 2× 2 case there is a trick, though, which is really useful:

For λ1 choose any nonzero column of A− λ2I.
For λ2 choose any nonzero column of A− λ1I.

Example: We saw that the eigenvalues for A =

[

3 2
2 3

]

are λ1 = 5 and λ2 = 1.

Then:

• For λ1 = 5 choose any nonzero column of

A− λ2I = A− 1I =

[

3 2
2 3

]

−

[

1 0
0 1

]

=

[

2 2
2 2

]

so

[

2
2

]

will do. Since any multiple of this works, pick the nicer v̄1 =

[

1
1

]

.

• For λ2 = 1 choose any nonzero column of

A− λ1I = A− 5I =

[

3 2
2 3

]

−

[

5 0
0 5

]

=

[

−2 2
2 −2

]

so

[

−2
2

]

will do. Since any multiple of this works, pick the nicer v̄2 =

[

1
−1

]

.

We thus have eigenpairs

(

5,

[

1
1

])

and

(

1,

[

1
−1

])

.

Example: We saw that the eigenvalue for A =

[

4 −1
1 2

]

is λ1 = λ2 = 3. Then:

• For λ1 = 3 choose any nonzero column of A − λ2I = A − 3I =

[

4 −1
1 2

]

−
[

3 0
0 3

]

=

[

1 −1
1 −1

]

so v̄1 =

[

1
1

]

will do.

• Notice that λ2 = λ1 so we get nothing new.

We thus have the single eigenpair

(

3,

[

1
1

])

.

Example: We saw that the eigenvalues for A =

[

3 2
−2 3

]

are λ1 = 3 + 2i and

λ2 = 3− 2i. Then:

• For λ1 = 3 + 2i choose any nonzero column of

A− λ2I = A− (3 + 2i)I =

[

3 2
−2 3

]

−

[

3 + 2i 0
0 3 + 2i

]

=

[

2i 2
−2 −2i

]

so

[

2i
−2

]

will do. Since any multiple of this works, we pick the nicer v̄1 =

[

1
i

]

.

• We know from earlier that for λ2 = 3−2i we can use the conjugate so v̄2 =

[

1
−i

]

.

We thus have eigenpairs

(

3 + 2i,

[

1
i

])

and

(

3− 2i,

[

1
−i

])

.
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1. Using Eigenpairs to Construct Solutions:

If we go back to x̄′ = Ax̄ observe that if (λ, v̄) is an eigenpair then it turns out that x̄ = eλtv̄ is a
solution:

x̄′ =
d

dt

(
eλtv̄

)
= eλtλv̄ = eλtAv̄ = Aeλtv̄ = Ax̄

This tells that an eigenpair yields a solution.

However there are some nuances. The process gets signficantly harder at the 3 × 3 case and
above as we have to start to consider things like eigenspace dimensions and obtaining linearly
independent sets of eigenvalues. Consequently we will stay with the 2× 2 case.

2. Two Real Eigenvalues

If we have two real eigenpairs with distinct eigenvectors:

(λ1, v̄1) and (λ2, v̄2) with λ1 6= λ2

So our two solutions are:
{x̄1, x̄2} =

{
eλ1tv̄1, e

λ2tv̄2
}

and they will form a fundamental set.

Example: The system

x̄′ =

[
3 2
2 3

]

x̄

has a matrix with eigenpairs
(

5,

[
1
1

])

and

(

1,

[
1

−1

])

Therefore we have two solutions

{x̄1, x̄2} =

{

e3t
[

1
1

]

, et
[

1
−1

]}

So the general solution is:

x̄ = C1e
5t

[
1
1

]

+ C2e
t

[
1

−1

]



3. One Real Eigenvalue

If we have just one eigenpair (λ, v̄) with multiplicity 2 then the situation is trickier. This eigenpair
will give us one solution

x̄1 = v̄eλt

It turns out that a second solution can be obtained by choosing w̄ to be a nonzero multiple of v̄
and then assigning:

x̄2 = eλt (w̄ + t (A− λI) w̄)

The proof of why this works is not at all obvious.

So our two solutions are:

{x̄1, x̄2} =
{
eλtv̄, eλt (w̄ + t (A− λI) w̄)

}

Example:

x̄′ =

[
4 −1
1 2

]

x̄

has matrix with eigenpair:
(

3,

[
1
1

])

This gives us one solution

x̄1 = e3t
[

1
1

]

To find another choose w̄ to be any non-multiple of v̄ =

[
1
1

]

, for example w̄ =

[
1
0

]

.

Then a second solution is:

x2 = eλt (w̄ + t (A− λI) w̄)

= e3t
([

1
0

]

+ t

[
1 −1
1 −1

] [
1
0

])

= e3t
([

1
0

]

+ t

[
1
1

])

= e3t
[

1 + t

t

]

So the general solution is

x̄ = C1e
3t

[
1
1

]

+ C2e
3t

[
1 + t

t

]



4. Two Complex Conjugate Eigenvalues

If we have two complex conjugate eigenpairs then we do get two solutions but they are not real
solutions. We’ve seen this issue before.

To understand the method we will work through an example the long way and then point out
that there’s a short method. Then we will work through another example with the short method.

Example:

x̄′ =

[
3 2

−2 3

]

x̄

has matrix with eigenpairs
(

3 + 2i,

[
1
i

])

and

(

3− 2i,

[
1

−i

])

Long Way: The first gives us the solution:

x̄ = e(3+2i)t

[
1
i

]

= e3t (cos (2t) + i sin (2t))

[
1
i

]

= e3t
[

cos (2t) + i sin (2t)
i cos (2t)− sin (2t)

]

= e3t
[

cos (2t) + i sin (2t)
− sin (2t) + i cos (2t)

]

1©

The second gives us the solution:

x̄ = e(3−2i)t

[
1

−i

]

= e3t (cos (−2t) + i sin (−2t))

[
1

−i

]

=
(
e3t cos (2t)− ie3t sin (2t)

)
[

1
−i

]

= e3t
[

cos (2t)− i sin (2t)
−i cos (2t)− sin (2t)

]

= e3t
[

cos (2t)− i sin (2t)
− sin (2t)− i cos (2t)

]

2©

Since linear combinations of solutions are solutions if we take half of the sum of these
we get the solution:

x̄1 =
1

2

[

1©+ 2©
]

= e3t
[

cos (2t)
− sin (2t)

]

and if we take 1
2i times the difference we get the solution:

x̄1 =
1

2i

[

1©− 2©
]

= e3t
[

sin (2t)
cos (2t)

]



Short Way: If we look back at 1© and break it into real and imaginary parts
then the two solutions can be extracted from the real and imaginary parts:

x̄ = e3t
[

cos (2t) + i sin (2t)
− sin (2t) + i cos (2t)

]

= e3t
[

cos (2t)
− sin (2t)

]

︸ ︷︷ ︸

x̄1

+ i e3t
[

sin (2t)
cos (2t)

]

︸ ︷︷ ︸

x̄2

So the general solution is:

x̄ = C1e
3t

[
cos (2t)

− sin (2t)

]

+ C2e
3t

[
sin (2t)
cos (2t)

]

We can see now that the short method would be to take one eigenpair:

(r + si, v̄)

Use this to calculate 1© and extract the real and imaginary parts. But where did 1©
come from? It came from doing the calculation:

ert (cos (st) + i sin (st)) v̄

So the key is to do this calculation and extract the real and imaginary parts and
those will be x̄1 and x̄2.



Example:

x̄′ =

[
2 1

−5 2

]

x̄

has matrix with eigenpairs
(

2 + i
√
5,

[

i
√
5

−5

])

and

(

2− i
√
5,

[

−i
√
5

−5

])

We then calculate:

e2t
(

cos
(√

5t
)

+ i sin
(√

5t
))[

i
√
5

−5

]

= e2t
[
−
√
5 sin

(√
5t
)
+ i

√
5 cos

(√
5t
)

−5 cos
(√

5t
)
− 5i sin

(√
5t
)

]

From here we extract the real and imaginary parts:

x̄1 = e2t
[
−
√
5 sin

(√
5t
)

−5 cos
(√

5t
)

]

x̄2 = e2t
[
−
√
5 cos

(√
5t
)

−5 sin
(√

5t
)

]

So the general solution is

x̄ = C1e
2t

[
−
√
5 sin

(√
5t
)

−5 cos
(√

5t
)

]

+ C2e
2t

[
−
√
5 cos

(√
5t
)

−5 sin
(√

5t
)

]

Note: Other valid answers can look quite different from this since any
multiple of an eigenvector is an eigevector and since complex multiples can
look quite surprising.



5. An Initial Value Problem: Since we haven’t done one from start to finish, here
is an initial value problem:

Example: Solve

x̄′ =

[
5 −1
3 1

]

with x̄ (0) =

[
2
3

]

(a) Find the eigenvalues:

p (z) = det

[
z − 5 −1

3 z − 1

]

= (z − 5) (z − 1)− (−1) (3)

= z2 − 6z + 8 = (z − 2) (z − 4)

So the eigenvalues are λ1 = 2 and λ2 = 4.

(b) Find the eigenvectors:

For λ1 = 2 choose a nonzero column of A − λ2I =

[
1 −1
3 −3

]

so

v̄1 =

[
1
3

]

.

For λ2 = 4 choose a nonzero column of A − λ1I =

[
3 −1
3 −1

]

so

v̄1 =

[
1
1

]

.

(c) Write down the general solution:

We have

x̄ = C1e
2t

[
1
3

]

+ C2e
4t

[
1
1

]

(d) Plug in the initial value and solve:

x̄ (0) = C1

[
1
3

]

+ C2

[
1
1

]

=

[
1 1
3 1

]

c̄ =

[
2
3

]

so that:

c̄ =

[
1 1
3 1

]
−1 [

2
3

]

=
1

−2

[
1 −1

−3 1

] [
2
3

]

= −1

2

[
−1
−3

]

=

[
1/2
3/2

]

(e) Write down the answer:

x̄ =
1

2
e2t

[
1
3

]

+
3

2
e4t

[
1
1

]



MATH 246: Chapter 3 Section 6: Graphs of Solutions
Justin Wyss-Gallifent

Main Topics:

• Basic Idea

• Gallery of Possibilities

1. Introduction:

The goal of this section is to understand what the solutions of the system:

x̄′ = Ax̄

look like graphically when we are in the n = 2 case.

To make this a little clearer instead of thinking of x̄′ as

[
x1(t)
x2(t)

]
we’ll think of x̄′ as

[
x(t)
y(t)

]
because this way a solution can be thought of as a curve which moves around in the xy-plane as
a function of time t.

In addition we’ll think of the matrix A as:

A =

[
a11 a12
a21 a22

]
What we’ll do first is go through one example thoroughly and then the rest will be categorized
without too much explanation.

2. Broad Strokes:

The general idea is that the solutions can always be graphed using just the eigenvalues and
sometimes (but not always) the eigenvectors and sometimes (but not always) the matrix. The
solutions will not be perfect but they’ll give us a lot of insight.

Here the types of solutions have been broken down into five categories to make them easier to
remember. Each category has subcategories.

While this seems like a lot there are many similarities and you’ll find that patters repeat over and
over and make a lot of sense, so it’s really not that terrible!

3. First Example:

Consider the system:

x̄′ =

[
5 4
2 7

]
x̄

The eigenpairs of A =

[
5 4
2 7

]
are

(
3,

[
−2

1

])
and

(
9,

[
1
1

])
. The general solution is then

x̄ = C1e
3t

[
−2

1

]
+ C2e

9t

[
1
1

]
Let’s analyze a few solutions:



• If C1 = 0 and C2 = 0 then we get x̄ =

[
0
0

]
which is a constant solution which sits at the

origin for all t.

• If C1 = 0 and C2 = 1 then we get x̄ = e9t
[

1
1

]
=

[
e9t

e9t

]
Notice that x(t) = e9t and

y = e9t are always positive and equal. As t→∞ this point moves away from the origin and
as t→ −∞ this point moves toward but never touches (slows down as it goes) the origin.

• If C1 = 0 and C2 = −1 we get a similar thing, the only difference being that both x(t) and
y(t) are negative.

• If C1 = 1 and C2 = 0 then we get x̄ = e3t
[
−2

1

]
=

[
−2e3t

e3t

]
. This solution always has

x = −2y but otherwise has the same behavior.

• If C1 = −1 and C2 = 0 we get the opposite of the previous.

All together we get the following five solutions:

One more solution:

• If C1 = 1 and C2 = 1 then we get x̄ = e3t
[
−2

1

]
+ e9t

[
1
1

]
. For large negative t the e9t is

closer to zero than the e3t and so the function behaves like e3t
[
−2

1

]
. On the other hand

for large positive t the e3t still exists and contributes but the e9t is much more significant

and so the function turns out to be approaching parallel to e9t
[

1
1

]
. The result is:



4. Categories of Solutions:

(a) The eigenvalues λ1, λ2 are both real, nonzero and different.

i. Both eigenvalues are positive: Nodal Source - Unstable
In this case there are four straight-line solutions moving away from the origin along the
vectors ±v̄1 and ±v̄2. The other solutions move away from the origin too, however when
they are close to the origin they are tangent to the eigenvector whose eigenvalue is closest
to 0 and when they are far from the origin they are tangent to the eigenvector whose
eigenvalue is furthest from 0.

Example 1: If A =

[
5 4
2 7

]
then the epairs are

(
3,

[
−2

1

])
,

(
9,

[
1
1

])
. Picture:

ii. Both eigenvalues are negative: Nodal Sink - Stable
In this case there are four straight-line solutions moving toward the origin along the
vectors ±v̄1 and ±v̄2. The other solutions move toward from the origin too, however
when they are close to the origin they are tangent to the eigenvector whose eigenvalue
is closest to 0 and when they are far from the origin they are tangent to the eigenvector
whose eigenvalue is furthest from 0.

Example 2: If A =

[
−46 4
−4 −29

]
then the epairs are

(
−45,

[
4
1

])
,

(
−30,

[
1
4

])
.

Picture:

iii. One eigenvalue is positive and the other is negative: Saddle - Unstable
In this case there are four straight-line solutions. The two corresponding to the positive
eigenvalue move away from the origin (along the eigenvector and its opposite) and the two
corresponding to the negative eigenvalue move toward the origin (along the eigenvector
and its opposite). The other solutions move toward the origin initially parallel to the
straight-line solutions moving toward the origin but then curve and move away parallel
to the other straight-line solution.



Example 3: If A =

[
−5 4

8 −1

]
then the epairs are

(
−9,

[
−1

1

])
,

(
3,

[
1
2

])
.

Picture:

(b) The eigenvalues are complex conjugates.

i. They have the form 0± si: Circle - Stable
In this case the solutions are circles around the origin. They are clockwise if a12 > 0
and counterclockwise if a12 < 0.

Example 4: If A =

[
−2 2
−4 2

]
then the evals are ±2i. Picture:

Example 5: If A =

[
0 −3

12 0

]
then the evals are ±6i. Picture:

ii. They have the form r ± si: Spiral Source - Unstable (if out) or Sink - Stable (if
in)
In this case the solutions are spirals around the origin. They are clockwise if a12 > 0
and counterclockwise if a12 < 0 and they spiral in if r < 0 and out if r > 0.



Example 6: If A =

[
1 2
−4 5

]
then the evals are 3± 2i. Picture:

Example 7: If A =

[
−1 −2

4 −5

]
then the evals are −3± 2i. Picture:

Example 8: If A =

[
−2 3
−3 −2

]
then the evals are −2± 3i. Picture:

Example 9: If A =

[
2 −3
3 2

]
then the evals are 2± 6i. Picture:

(c) One eigenvalue is 0, the other λ is real and not zero.

i. The other eigenvalue is positive: Linear Source - Unstable
In this case the line along the eigenvector whose eigenvalue is 0 is a line of stationary
solutions - basically a bunch of points. The other solutions all move away from that line
and are parallel to the eigenvector corresponding to λ.



Example 10: If A =

[
2 1
2 1

]
then the epairs are

(
0,

[
−1

2

])
,

(
3,

[
1
1

])
. Picture:

ii. The other eigenvalue is negative: Linear Sink - Stable
In this case the line along the eigenvector whose eigenvalue is 0 is a line of stationary
solutions - basically a bunch of points. The other solutions all move toward that line
and are parallel to the eigenvector corresponding to λ.

Example 11: If A =

[
−2 −1
−2 −1

]
then the epairs are

(
0,

[
−1

2

])
,

(
−3,

[
1
1

])
.

Picture:

(d) There is a single nonzero eigenvalue λ and A looks like

[
λ 0
0 λ

]
:

i. If the eigenvalue is positive: Radial Source - Unstable
In this case all the solutions are straight lines moving away from the origin.

Example 12: If A =

[
2 0
0 2

]
then the eval is 2. Picture:

ii. If the eigenvalue is negative: Radial Sink - Stable
In this case all the solutions are straight lines moving toward the origin.



Example 13: If A =

[
−3 0

0 −3

]
then the eval is −3. Picture:

(e) There is a single nonzero eigenvalue λ and A does not look like that:

i. If the eigenvalue is positive: Twist Source - Unstable
In this case there are two straight-line solutions moving away from the origin along
the eigenvector corresponding to λ. The other solutions are all curved solutions which
move away from the origin in a clockwise direction if a12 > 0 and in a counterclockwise
direction if a12 < 0.

Example 14: If A =

[
4 −1
1 2

]
then the epair is

(
3,

[
1
1

])
. Picture:

Example 15: If A =

[
4 1
−1 2

]
then the epair is

(
3,

[
−1

1

])
. Picture:

ii. If the eigenvalue is negative: Twist Sink - Stable
In this case there are two straight-line solutions moving toward the origin along the
eigenvector corresponding to λ. The other solutions are all curved solutions which move
toward the origin in a clockwise direction if a12 > 0 and in a counterclockwise direction
if a12 < 0.



Example 16: If A =

[
−3 1
−1 −1

]
then the epair is

(
−2,

[
1
1

])
. Picture:

Example 17: If A =

[
−3 −1

1 −1

]
then the epair is

(
−2,

[
−1

1

])
. Picture:

iii. If the eigenvalue is zero: Parallel Shear - Unstable
In this case the line along the eigenvector whose eigenvalue is 0 is a line of stationary
solutions. The other solutions are straight lines parallel to that one, “clockwise” if
a12 > 0 and “counterclockwise” if a12 < 0.

Example 18: If A =

[
−1 1
−1 1

]
then the epair is

(
0,

[
1
1

])
. Picture:

Example 19: If A =

[
1 −1
1 −1

]
then the epair is

(
0,

[
1
1

])
. Picture:



MATH 246: Chapter 3 Section 6: Graphs of Solutions Cheatsheet

1. A =

[
5 4
2 7

]
:(

3,

[
−2
1

])
,

(
9,

[
1
1

])

2. A =

[
−46 4
−4−29

]
:(

−45,

[
4
1

])
,

(
−30,

[
1
4

])

3. A =

[
−5 4
8−1

]
:(

−9,

[
−1
1

])
,

(
3,

[
1
2

])
.

4. A =

[
−2 2
−4 2

]
: λ = 0± 2i

5. A =

[
0−3

12 0

]
: λ = 0± 6i

6. A =

[
1 2

−4 5

]
: λ = 3± 2i

7. A =

[
−1−2
4−5

]
: λ = −3± 2i

8. A =

[
−2 3
−3−2

]
: λ = −2± 3i

9. A =

[
2−3
3 2

]
: λ = 2± 6i

10. A =

[
2 1
2 1

]
:(

0,

[
−1
2

])
,

(
3,

[
1
1

])

11. A =

[
−2−1
−2−1

]
:(

0,

[
−1
2

])
,

(
−3,

[
1
1

])

12. A =

[
2 0
0 2

]
: λ = 2



13. A =

[
−3 0
0−3

]
: λ = −3

14. A =

[
4−1
1 2

]
:

(
3,

[
1
1

])

15. A =

[
4 1

−1 2

]
:

(
3,

[
−1
1

])

16. A =

[
−3 1
−1−1

]
:

(
−2,

[
1
1

])

17. A =

[
−3−1
1−1

]
:

(
−2,

[
−1
1

])

18. A =

[
−1 1
−1 1

]
:

(
0,

[
1
1

])

19. A =

[
1−1
1−1

]
:

(
0,

[
1
1

])



MATH 246: Chapter 3 Section 7: Hamiltonian Systems
Justin Wyss-Gallifent

Main Topics:

• Preliminaries

• Hamiltonian Systems

• Stationary Solutions/Points

• Analysis with the Hessian

1. Preliminaries

The goal of this section is to look at a couple of more specific things related to systems of two
differential equations. We’re going to first throw out the requirement that the system is linear,
meaning we can’t assume it looks like x̄′ = Ax̄. Instead we’ll think of these as:

x′ = f(x, y)

y′ = g(x, y)

Example: One example would be something like:

x′ = x2 − y2

y′ = y + 2

2. Definition of Hamiltonian One very special type of system of differential equations is a Hamil-
tonian system. A Hamiltonian system is a system in which there is some function H(x, y) such
that:

x′ = Hy(x, y)

y′ = −Hx(x, y)

The reason that these are nice is that for a Hamiltonian system we have:

−Hx(x, y)
dx

dt
= Hy(x, y)

dy

dt

Hx(x, y)
dy

dt
+ Hy(x, y)

dy

dt
= 0

d

dt
H(x, y) = 0

H(x, y) = C

For some/any constant C. This means that solutions to the system of differential equations are
level curves for H.



Example: The system:

x′ = 2y

y′ = −2x

is Hamiltonian with H(x, y) = x2 + y2 because x′ = Hy = 2y and y′ = −Hx = −2x.
The solutions then satisfy x2 + y2 = C and so they’re circles.
Notice that we could also have seen this using methods from the previous section. Here

x̄′ =

[
0 2

−2 0

]
x̄ so the eigenvalues for A are 0 ± 2i and since a12 > 0 the solutions

are (clockwise) circles.

3. Determining if a System is Hamiltonian

It turns out that a system of the form:

x′ = f(x, y)

y′ = g(x, y)

is Hamiltonian if fx + gy = 0 and if it is then we can find H using a process we used before with
exact differential equations.

Example: Show the following system is Hamiltonian and find H(x, y):

x′ = x2 + 2y

y′ = −2xy

First note that fx + gy = 2x − 2x = 0 so the system is Hamiltonian. We wish to
find H(x, y) with Hy(x, y) = x2 + 2y and −Hx(x, y) = −2xy. The latter tells us
Hx(x, y) = 2xy and so H(x, y) = x2y+g(y). From here Hy(x, y) = x2 +g′(y) = x2 +2y
so g′(y) = 2y and g(y) = y2 + C. Then H(x, y) = x2y + y2 + C. Since we can choose
any constant we let H(x, y) = x2y + y2. Thus the solutions, when plotted, satisfy the
equation x2y + y2 = C, whatever this looks like!

4. Analysis of Stationary Solutions/Points

A stationary solution is a solution for which x′ = 0 and y′ = 0. These are easy to solve for.

Example: Find the stationary solutions to:

x′ = x2 − y2

y′ = y + 2

We set x2 − y2 = 0 and y + 2 = 0. The latter gives us y = −2 and then the former
gives us x2 − 4 = 0 so x = ±2. Therefore there are two stationary solutions, (2,−2)
and (−2,−2).

Hamiltonian systems can be analyzed further by looking at the Hessian at each stationary point.
The Hessian is the following matrix:

∂2H =

[
Hxx Hxy

Hyx Hyy

]



We’ll only look at those for which the determinant of the Hessian is nonzero.

If det ∂2H < 0 then the stationary point is a saddle.

If det ∂2H > 0 then the stationary point is a circle.

Directions can be figured out by testing points.

Example: Consider the system

x′ = 4y − y3

y′ = x

To find the stationary solutions we set 4y − y3 = y(4 − y2) = 0 and x = 0. The former
gives us y = 0,±2 so there are three stationary solutions at (0, 0), (0, 2) and (0,−2).
Noting that Hy = 4y − y3 and −Hx = x, so Hx = −x, we get the Hessian:

∂2H =

[
Hxx Hxy

Hyx Hyy

]
=

[
−1 0

0 4 − 3y2

]
Then at each point:

det ∂2H(0, 0) = det

[
−1 0

0 4

]
= −4 so (0, 0) is a saddle

det ∂2H(0, 2) = det

[
−1 0

0 −8

]
= 8 so (0, 2) is a circle

det ∂2H(0,−2) = det

[
−1 0

0 −8

]
= 8 so (0,−2) is a circle.

A preliminary picture is:

Notice how the circles fit nicely with the saddle shape!



Example (Continued):
We need to know what direction everything goes in. Interestingly, for this picture, we
can find everything out by testing one point in the system. At the point (0, 1) we have:

x′(0, 1) = 3

y′(0, 1) = 0

Meaning at (0, 1) the solution is moving to the right. Everything else is filled in according
to rules of compatibility.

If we were to fill in more solutions it starts to look pretty:



Example: Consider the system

x′ = −x + y + x2

y′ = y − 2xy

To find the stationary points we set −x+ y + x2 = 0 and y− 2xy = y(1− 2x) = 0. The
latter gives us y = 0 or x = 1

2 . If y = 0 then the former gives us x = 0, 1 and if x = 1
2

then the former gives us y = 1
4 . So there are three stationary points at (0, 0), (1, 0) and(

1
2 ,

1
4

)
.

Noting that Hy = −x+y+x2 and −Hx = y−2xy, so Hx = 2xy−y, we get the Hessian:

∂2H =

[
Hxx Hxy

Hyx Hyy

]
=

[
2y 2x− 1

2x− 1 1

]
Then at each point:

det ∂2H(0, 0) = det

[
0 −1

−1 1

]
= −1 so (0, 0) is a saddle.

det ∂2H(1, 0) = det

[
0 1
1 1

]
= −1 so (1, 0) is a saddle.

det ∂2H
(
1
2 ,

1
4

)
= det

[
1
2 0
0 1

]
= 1

2 so
(
1
2 ,

1
4

)
is a center.

A preliminary picture is:

We need to know what direction everything goes in. Interestingly, for this picture, we
can find everything out by testing one point in the system. At the point

(
1
2 , 0

)
we have:

x′
(

1

2
, 0

)
= −

y′
(

1

2
, 0

)
= 0

Meaning at
(
1
2 , 0

)
the solution is moving to the left. Everything else is filled in according

to rules of compatibility. Some adjustment of the saddles is also needed!



MATH 246: Chapter 3 Section 8:
Justin Wyss-Gallifent

Main Topics:

•

1. Introduction

The goal of this section is to do a bit of analysis of nonlinear systems which are not necessarily
Hamiltonian. The approach is similar though - find stationary solutions, find what they look like,
fill them in, figure out what the remaining solutions look like.

2. Linearization at the Stationary Solutions

This sounds far more complicated than it sounds. In Calculus suppose you know that f(x) = x2−9
and you’re investigating this function. You might notice that the x-intercepts are x = ±3 and
you might want to know what happens at those points. You might notice that f ′(x) = 2x so
f ′(−3) = −6 and f ′(3) = 6 and so the function is decreasing at x = −3 and increasing at x = 3.
What you just did was that you linearized the function at x = ±3, meaning you sort of made it
a line with slope ±6 at those points.

What we’ll do is precisely the same thing but with a system of nonlinear differential equations.

Given a system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

First a notation point - sometimes we write

f̄(x, y) =

[
f(x, y)
g(x, y)

]
Using this notation the linearization matrix for this system is the matrix:

∂f̄ =

[
fx fy
gx gy

]

Example: Consider the system:

x′ = y

y′ = 4x− x3

Since f(x, y) = y and g(x, y) = 4x− x3 the linearization matrix is

∂f̄ =

[
0 1

4− 3x2 0

]



3. Stationary Point Analysis

What’s really cool about this linearization is this. Just like in calculus if you plug in a point the
linearization matrix will tell you what’s happening at that point. In our case we’ll plug in the
stationary points. The resulting matrix can be analyzed, more or less, just like the matrices in
Chapter 3 Section 6. This means finding the eigenvalues, eigenvectors if necessary, and so on.

Now then, it’s not perfect, but basically we can know if the stationary points are nodal sources,
nodal sinks, saddles, radial sources or sinks, spiral sources or sinks, or circles. Basically every case
that doesn’t have an eigenvalue of zero is still valid.

If you’re curious, this is just like if you discovered that f ′(3) = 6 you know the function is
increasing at that point but if you discovered that f ′(3) = 0 then the function could be increasing
or decreasing or neither at that point.



Example: Consider the system:

x′ = y

y′ = 4x− x3

Since f(x, y) = y and g(x, y) = 4x− x3 the linearization matrix is

∂f̄ =

[
0 1

4− 3x2 0

]
The stationary solutions are (0, 0), (2, 0) and (−2, 0). We check the linearization matrix
at those points:

• At (0, 0): ∂f̄(0, 0) =

[
0 1
4 0

]
. The eigenpairs are

(
−2,

[
−1

2

])
and

(
2,

[
1
2

])
.

This is a saddle.

• At (2, 0): ∂f̄(2, 0) =

[
0 1
−8 0

]
. The eigenvalues are 0± i

√
8. This is a clockwise

circle since a12 > 0.

• At (−2, 0): ∂f̄(−2, 0) =

[
0 1
−8 0

]
. The eigenvalues are 0 ± i

√
8. This is a

clockwise circle since a12 > 0.

Together we get the picture:

From here we can fill in a nice family of solutions:



Example: Consider the system:

x′ = (y − x)(x− 1)

y′ = (3 + 2x− x2)y

Since f(x, y) = xy− x2− y + x and g(x, y) = 3y + 2xy− x2y the linearization matrix is

∂f̄ =

[
y − 2x + 1 x− 1

2y − 2xy 3 + 2x− x2

]
The stationary solutions are (0, 0), (−1,−1), (1, 0) and (3, 3). We check the linearization
at those poinst:

• At (0, 0): ∂f̄(0, 0) =

[
1 −1
0 3

]
. The eigenpairs are

(
1,

[
1
0

])
and

(
3,

[
1
−2

])
.

This is a source. Solutions close to (0, 0) are tangent to

[
1
0

]
.

• At (−1,−1): ∂f̄(−1,−1) =

[
2 −2
−4 0

]
. The eigenpairs are

(
−2,

[
1
2

])
and(

4,

[
1
−1

])
. This is a saddle.

• At (1, 0): ∂f̄(1, 0) =

[
−1 0

0 4

]
. The eigenpairs are

(
−1,

[
1
0

])
and

(
4,

[
0
1

])
.

This is a saddle.

• At (3, 3): ∂f̄(3, 3) =

[
−2 2
12 0

]
. The eigenvalues are −1 ± i

√
23. Since a12 > 0

this is a clockwise spiral sink.

Together we get the picture:



MATH 246: Chapter 3 Section 9: Linearization of Nonlinear Systems
Justin Wyss-Gallifent

Main Topics:

• Linearization

• Stationary Point Analysis

1. Introduction

The goal of this section is to do a bit of analysis of nonlinear systems which are not necessarily
Hamiltonian. The approach is similar though - find stationary solutions, find what they look like,
fill them in, figure out what the remaining solutions look like.

2. Linearization at the Stationary Solutions

This sounds far more complicated than it sounds. In Calculus suppose you know that f(x) = x2−9
and you’re investigating this function. You might notice that the x-intercepts are x = ±3 and
you might want to know what happens at those points. You might notice that f ′(x) = 2x so
f ′(−3) = −6 and f ′(3) = 6 and so the function is decreasing at x = −3 and increasing at x = 3.
What you just did was that you linearized the function at x = ±3, meaning you sort of made it
a line with slope ±6 at those points.

What we’ll do is precisely the same thing but with a system of nonlinear differential equations.

Given a system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

First a notation point - sometimes we write

F̄ (x, y) =

[
f(x, y)
g(x, y)

]
Using this notation the linearization matrix for this system is the matrix:

∂F̄ =

[
fx fy
gx gy

]

Example: Consider the system:

x′ = y

y′ = 4x− x3

Since f(x, y) = y and g(x, y) = 4x− x3 the linearization matrix is

∂F̄ =

[
0 1

4− 3x2 0

]



3. Stationary Point Analysis

What’s really cool about this linearization is this. Just like in calculus if you plug in a point the
linearization matrix will tell you what’s happening at that point. In our case we’ll plug in the
stationary points. The resulting matrix can be analyzed, more or less, just like the matrices in
Chapter 3 Section 6. This means finding the eigenvalues, eigenvectors if necessary, and so on.

Now then, it’s not perfect, but basically we can know if the stationary points are nodal sources,
nodal sinks, saddles, radial sources or sinks, spiral sources or sinks, or circles. Basically every case
that doesn’t have an eigenvalue of zero is still valid.

If you’re curious, this is just like if you discovered that f ′(3) = 6 you know the function is
increasing at that point but if you discovered that f ′(3) = 0 then the function could be increasing
or decreasing or neither at that point.



4. Stationary Point Analysis

What’s really cool about this linearization is this. Just like in calculus if you plug in a point the
linearization matrix will tell you what’s happening at that point. In our case we’ll plug in the
stationary points. The resulting matrix can be analyzed, more or less, just like the matrices in
Chapter 3 Section 6. This means finding the eigenvalues, eigenvectors if necessary, and so on.

Now then, it’s not perfect, but basically we can know if the stationary points are nodal sources,
nodal sinks, saddles, radial sources or sinks, spiral sources or sinks, or circles. Basically every case
that doesn’t have an eigenvalue of zero is still valid.

If you’re curious, this is just like if you discovered that f ′(3) = 6 you know the function is
increasing at that point but if you discovered that f ′(3) = 0 then the function could be increasing
or decreasing or neither at that point.

Example:
Consider the system:

x′ = 1− y
y′ = x2 − y2

Since f(x, y) = 1− y and g(x, y) = x2 − y2 the linearization matrix is

∂F̄ =

[
0 −1

2x −2y

]
The stationary solutions are (1, 1) and (−1, 1). We check the linearization matrix at
those points:

• At (1, 1): ∂F̄ (1, 1) =

[
0 −1
2 −2

]
.

The eigenvalues are λ = −1± i so the point is a counterclockwise spiral sink.

• At (−1, 1): ∂F̄ (−1, 1) =

[
0 −1
−2 −2

]
. The eigenpairs are(

−1 +
√

3,

[
1 +
√

3
−2

]
≈

[
2.7
−2

])
and

(
−1−

√
3,

[
1−
√

3
−2

]
≈

[
−1.7
−2

])
.

This is a saddle.



Example: Consider the system:

x′ = y

y′ = 4x− x3

Since f(x, y) = y and g(x, y) = 4x− x3 the linearization matrix is

∂F̄ =

[
0 1

4− 3x2 0

]
The stationary solutions are (0, 0), (2, 0) and (−2, 0). We check the linearization matrix
at those points:

• At (0, 0): ∂F̄ (0, 0) =

[
0 1
4 0

]
. The eigenpairs are

(
−2,

[
−1

2

])
and(

2,

[
1
2

])
. This is a saddle.

• At (2, 0): ∂F̄ (2, 0) =

[
0 1
−8 0

]
. The eigenvalues are 0± i

√
8. This is a clockwise

circle since a12 > 0.

• At (−2, 0): ∂F̄ (−2, 0) =

[
0 1
−8 0

]
. The eigenvalues are 0 ± i

√
8. This is a

clockwise circle since a12 > 0.

Together we get the picture:

From here we can fill in a nice family of solutions:



Example: Consider the system:

x′ = (y − x)(x− 1)

y′ = (3 + 2x− x2)y

Since f(x, y) = xy− x2− y+ x and g(x, y) = 3y+ 2xy− x2y the linearization matrix is

∂F̄ =

[
y − 2x+ 1 x− 1

2y − 2xy 3 + 2x− x2
]

The stationary solutions are (0, 0), (−1,−1), (1, 0) and (3, 3). We check the linearization
at those poinst:

• At (0, 0): ∂F̄ (0, 0) =

[
1 −1
0 3

]
. The eigenpairs are

(
1,

[
1
0

])
and(

3,

[
1
−2

])
. This is a source. Solutions close to (0, 0) are tangent to

[
1
0

]
.

• At (−1,−1): ∂F̄ (−1,−1) =

[
2 −2
−4 0

]
. The eigenpairs are

(
−2,

[
1
2

])
and(

4,

[
1
−1

])
. This is a saddle.

• At (1, 0): ∂F̄ (1, 0) =

[
−1 0

0 4

]
. The eigenpairs are

(
−1,

[
1
0

])
and(

4,

[
0
1

])
. This is a saddle.

• At (3, 3): ∂F̄ (3, 3) =

[
−2 2
12 0

]
. The eigenvalues are −1 ± i

√
23. Since a12 > 0

this is a clockwise spiral sink.

Together we get the picture:



MATH 246: Chapter 3 Section 10: Population Dynamics
Justin Wyss-Gallifent

Main Topics:

• Predator-Prey Models

• Competing Species Models

• Cooperating Species Models

1. Predator-Prey Models

Consider a interaction between predators and prey. Suppose the number of prey is x(t) while the
number of predators is y(t). A simple but reasonable system of differential equations modeling
these could be:

x′ = (r − ax− by)x

y′ = (−s + cx− dy)y

To understand the meaning of these constants, consider that r − ax − by is the growth rate for
prey while −x+ cx− dy is the growth rate for predators. This is the reason they’re multiplied by
x and y respectively to get x′ and y′. Moreover:

• The constant r > 0 gives the intrinsic growth rate of the prey. This is positive because by
default (in absence of predators) the prey will reproduce.

• The growth rate of prey may decline as the number of prey grows due to competetiveness.
This is managed by the constant a ≥ 0.

• The growth rate of the prety will decline as the number of predators grows. This is managed
by the constant d > 0.

• The constant s > 0 gives the intrinsic growth rate of the predators. We have −s because by
default (in absense of prey) the predators will die out.

• The growth rate of predators will increase with the number of prey. This is managed by the
constant c > 0.

• The growth rate of predators may decline as the number of predators grows due to compete-
tiveness. This is managed by the constant d ≥ 0.

Our goal will be to analyze such systems and understand what happens to the populations in the
long term.



Example: Consider the model:

x′ = (12 − 2x− 3y)x

y′ = (−15 + 5x)y

There are three stationary points which we analyze as follows:

• (0, 0) has ∂F̄ =

[
12 0
0 −15

]
with eigenpairs

(
12,

[
1
0

])
,

(
−15,

[
0
1

])
.

It follows that this is a saddle.

• (6, 0) has ∂F̄ =

[
−12 −18

0 15

]
with eigenpairs

(
−12,

[
1
0

])
,

(
15,

[
−2

3

])
It follows that this is a saddle.

• (3, 2) has ∂F̄ =

[
−6 −9
10 0

]
with eigenvalues −3 ± 9i.

It follows that this is a counterclockwise spiral sink.

The following picture was pilfered from Levermore’s notes:

So now an initial population of (0.1, 2) will undergo a decrease in predators, resulting
in an increase in prey, resulting in an increase in predators, resulting in a decrease in
prey, and so on, and will eventually spiral into the stable point (3, 2).



Example: Consider the model:

x′ = (6 − 3y)x

y′ = (−15 + 5x)y

There are two stationary points which we analyze as follows:

• (0, 0) has ∂F̄ =

[
12 0
0 −15

]
with eigenpairs

(
6,

[
1
0

])
,

(
−15,

[
0
1

])
.

It follows that this is a saddle.

• (3, 2) has ∂F̄ =

[
0 −9

10 0

]
with eigenvalues 0 ± 90i.

It follows that this is a counterclockwise circle.

The following picture was pilfered from Levermore’s notes:

So now an initial population in the first quadrant will tend to circle around (3, 2) but
it will not approach it in a spiral sense.



2. Competing Species Models

Competing species models look liks this:

x′ = (r − ax− by)x

y′ = (s− cx− dy)y

Example: Consider the model:

x′ = (16 − 4x− 2y)x

y′ = (10 − x− 2y)y

There are four stationary points which we analyze as follows:

• (0, 0) has ∂F̄ =

[
16 0
0 10

]
with eigenpairs

(
16,

[
1
0

])
,

(
10,

[
0
1

])
.

It follows that this is a nodal source..

• (0, 5) has ∂F̄ =

[
6 0

−5 −10

]
with eigenpairs

(
6,

[
16
−5

])
,

(
−10,

[
0
1

])
It follows that this is a saddle.

• (4, 0) has ∂F̄ =

[
−16 −8

0 6

]
with eigenpairs

(
−16,

[
1
0

])
,

(
6,

[
−4
11

])
It follows that this is a saddle.

• (2, 4) has ∂F̄ =

[
−8 −4
−4 −8

]
with eigenpairs

(
−12,

[
1
1

])
,

(
−4,

[
1

−1

])
It follows that this is a nodal sink.

The following picture was pilfered from Levermore’s notes:

We see that if an initial population has both x and y positive then it will tend towards
(2, 4) but this can happen in a variety of ways.
For example if we start at (10, 0.1) this means there are lots of species x and few of
species y. Because there are a lot of species x they are constrained by resources and
hence their population drops. When it gets close to x = 4 however the rate of drop
decreases and at that point resources are not so constraining it tends to start to stabilize.
However at that point since x and y are competing y can grow now, since there aren’t
so many x. And so it does, and this causes x to drop more. In the long term (infinity)
the pair heads to (2, 4).



3. Cooperating Species Models

Cooperating species models look like this;

x′ = (r − ax + by)x

y′ = (s + cx− dy)y

Example: Consider the model:

x′ = (27 − 9x + y)x

y′ = (20 + 4x− 4y)y

There are four stationary points which we analyze as follows:

• (0, 0) has ∂F̄ =

[
27 0
0 20

]
with eigenpairs

(
27,

[
1
0

])
,

(
20,

[
0
1

])
.

It follows that this is a nodal source..

• (0, 5) has ∂F̄ =

[
32 0
20 −20

]
with eigenpairs

(
32,

[
13
5

])
,

(
−20,

[
0
1

])
It follows that this is a saddle.

• (3, 0) has ∂F̄ =

[
−27 3

0 32

]
with eigenpairs

(
−27,

[
1
0

])
,

(
32,

[
3

59

])
It follows that this is a saddle.

• (4, 9) has ∂F̄ =

[
−36 9

16 −36

]
with eigenpairs

(
−24,

[
3
4

])
,

(
−48,

[
3

−4

])
It follows that this is a nodal sink.

The following picture was pilfered from Levermore’s notes:

We see that if an initial population has both x and y positive then it will tend towards
(4, 9) but this can happen in a variety of ways.


