
Justin’s MATH246 Guide and Project 1.

Due by Monday 22 July 2019

Contents

• What to Submit
• The dsolve Command
• Implicit Solutions
• Graphs of Explicit Solutions
• Graphs of Implicit Solutions
• Direction Fields
• Euler’s Method and Others

What to Submit

For this project you will need to create a script m-file which does all the tasks
listed in this project in order and does nothing else. You should then publish
the m-file and print and submit the result.

The dsolve Command

One of the most basic Matlab commands is dsolve, which symbolically solves
ordinary differential equations and sytems of differential equations. First we
declare a symbolic function like y(t):

syms y(t)

From here, the first derivative is diff(y,1) or just diff(y), the second as
diff(y,2) and so on and so we can apply dsolve to solve the differential
equation y′ = y+t as follows. Note the use of double equals == in very computer-
science fashion:

dsolve(diff(y,1) == y+t)

ans =

C1*exp(t) - t - 1

If you run this your C might have a different number. This is just a constant
which Matlab changes with each calculation.

Task 1: Define the symbolic function y(t).

Task 2: Solve the explicit differential equation dy
dt = t2 + sin(t).

1

An initial condition may be put in simply as a second condition, for example:

dsolve(diff(y,1) == y+t,y(1) == 2)

ans =

4*exp(-1)*exp(t) - t - 1

Task 3: Solve the initial value problem (a first-order linear DE) y′ − 2ty = t
with y(−1) = 2.

Implicit Solutions

We know that that many fairly simple differential equations have no explicit
solutions. We might be interested in what Matlab will do in these circumstances.
For example consider

(
y5 + 1

)
dy
dt = 1

t + t which we recognize as separable.
Throwing this into dsolve yields:

dsolve((y^5+1)*diff(y,1)==1/t+t)

ans =

root(z^6 + 6*z - 6*C4 - 6*log(t) - 3*t^2, z, 1)

root(z^6 + 6*z - 6*C4 - 6*log(t) - 3*t^2, z, 4)

root(z^6 + 6*z - 6*C4 - 6*log(t) - 3*t^2, z, 5)

root(z^6 + 6*z - 6*C4 - 6*log(t) - 3*t^2, z, 3)

root(z^6 + 6*z - 6*C4 - 6*log(t) - 3*t^2, z, 2)

root(z^6 + 6*z - 6*C4 - 6*log(t) - 3*t^2, z, 6)

Take a few moments to really make sense of this answer, Matlab is trying to
give us the six possible sixth roots of a degree-six equation. Compare to what
happens if do this by hand:

(
y5 + 1

)
dy
dt = 1

t + t∫
y5 + 1 dy =

∫
1
t + t dt

1
6y

6 + y = ln |t|+ 1
2 t

2 + C

It can take us a second or two to notice that these two solutions are the same.

It’s worth noting that sometimes Matlab will solve the result explicitly and
sometimes it won’t. For example the differential equation

(
y2 + 1

)
dy
dt = t results

in a cubic on the left, as Matlab finds:

2

dsolve((y^2+1)*diff(y,1)==t)

ans =

root(z^3 + 3*z - 3*C7 - (3*t^2)/2, z, 1)

root(z^3 + 3*z - 3*C7 - (3*t^2)/2, z, 2)

root(z^3 + 3*z - 3*C7 - (3*t^2)/2, z, 3)

However if we turn this into an initial value question by adding y(0) = 0 then
there is only one (not very pretty) solution, as Matlab finds:

dsolve((y^2+1)*diff(y,1)==t,y(0)==0)

ans =

((3*t^2)/4 + ((9*t^4)/16 + 1)^(1/2))^(1/3) - 1/((3*t^2)/4 + ((9*t^4)/16 + 1)^(1/2))^(1/3)

Now then, if we think for a minute we might realize that cubic equations do
have solutions, possibly complex, so can we force Matlab to solve the cubic
result of the non-initial-value question? The answer is yes. Basically Matlab
solves degree 2 polynomials but no higher unless we tell it to, and then it does.
The problem above can be solved explicitly by:

dsolve((y^2+1)*diff(y,1)==t,’MaxDegree’,3)

ans =

((3*C13)/2 + ((9*(t^2/2 + C13)^2)/4 + 1)^(1/2) + (3*t^2)/4)^(1/3) - 1/((3*C13)/2 + ((9*(t^2/2 + C13)^2)/4 + 1)^(1/2) + (3*t^2)/4)^(1/3)

1/(2*((3*C13)/2 + ((9*(t^2/2 + C13)^2)/4 + 1)^(1/2) + (3*t^2)/4)^(1/3)) - ((3*C13)/2 + ((9*(t^2/2 + C13)^2)/4 + 1)^(1/2) + (3*t^2)/4)^(1/3)/2 + (3^(1/2)*(1/((3*C13)/2 + ((9*(t^2/2 + C13)^2)/4 + 1)^(1/2) + (3*t^2)/4)^(1/3) + ((3*C13)/2 + ((9*(t^2/2 + C13)^2)/4 + 1)^(1/2) + (3*t^2)/4)^(1/3))*1i)/2

1/(2*((3*C13)/2 + ((9*(t^2/2 + C13)^2)/4 + 1)^(1/2) + (3*t^2)/4)^(1/3)) - ((3*C13)/2 + ((9*(t^2/2 + C13)^2)/4 + 1)^(1/2) + (3*t^2)/4)^(1/3)/2 - (3^(1/2)*(1/((3*C13)/2 + ((9*(t^2/2 + C13)^2)/4 + 1)^(1/2) + (3*t^2)/4)^(1/3) + ((3*C13)/2 + ((9*(t^2/2 + C13)^2)/4 + 1)^(1/2) + (3*t^2)/4)^(1/3))*1i)/2

That’s quite a lovely result. Okay - the publishing cut it off. But you get the
idea.

Also, observe that Matlab may give a result using built-in methods other than
RootOf. For example:

dsolve((y+cos(y))*diff(y,1)==2-t)

Warning: Unable to find explicit solution. Returning implicit solution instead.

ans =

solve(2*sin(y) + y^2 == 2*C16 - t*(t - 4), y)

Here Matlab returns the solution phrased with its own solve command. Basi-
cally it’s saying “The solution to the differential equation is the solution to this
equation here, which I can’t do.”

Lastly observe that if no solution exists then Matlab will say so. In this case
since the exponential function is never zero, no solution could possibly be found.

3

dsolve(exp(diff(y,1))==0)

Warning: Unable to find explicit solution.

ans =

[empty sym]

Task 4: Apply dsolve to the differential equation (y + exp(y))dy
dt = 1/t.

Task 5: Apply dsolve to the differential equation
(

1 + 1
y2

)
dy
dt = t.

Task 6: Apply dsolve to the differential equation
(

dy
dt

)2
+ 1 = 0.

Task 7: Apply dsolve to the intial value problem y′ + 2ty = t with y(2) = −3.

Graphs of Explicit Solutions

One of the beautiful things we can do is draw solutions very easily, or even
families of solutions. For a single solution to an initial value problem with just
one solution we can use the fplot command:

clear all

syms y(t)

fplot(dsolve(diff(y,1)==sin(t),y(0)==2))

-5 -4 -3 -2 -1 0 1 2 3 4 5

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4

Task 8: Plot the solution to the initial value problem dy
dt = y(y − 6) with

y(0) = 1.

If we wish to plot families of solutions we need to do a few things. First observe
that each new figure replaces the previous one and we want to do them all
together. Second since each initial value gives a solution we need to tell it to
solve with different initial values. This is how we do it. Enter the following
sequence:

figure;hold on;

for v=[-5:5]

fplot(dsolve(diff(y,1)==2*y,y(0)==v),[-1,3])

end

hold off

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

A few comments here. The line figure;hold on; creates a new figure and
holds on to it so it’s used for all future graphs. The for v=[-5;5] does the
next line once for each of v=-5,-4,-3,-2,-1,0,1,2,3,4,5. The line containing
the fplot does a plot for each of the initial values y(0) = v for v = −5, ..., 5 so
we get a whole family. The end ends the for loop and the hold off; releases
the hold on the figure. The only other change is the [-1,3] which chooses a
domain of t-values to plot. Unless specified Matlab makes its own choice and I
wanted a specific domain here.

Task 9: Plot the family of solutions to dy
dt = 0.1y(4 − y) with y(0) = yI for

yI = −3,−2, ..., 7.

5

Graphs of Implicit Solutions

The very nature of the way that Matlab returns implicit solutions, wrapping
them in things like solve or RootOf means we can’t then wrap that in fplot.
In general we have solve the equation ourselves and then put the solution into
fimplicit, which plots implicit functions. For example if we solve the initial
value problem (y2 − y)dy

dt = t with y(2) = 1 (it’s separable) we get 2y3 − 3y2 =
3t2 − 13. We can plot this with:

clear all

syms y t

fimplicit(2*y^3-3*y^2==3*t^2-13)

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Task 10: The initial value problem (y2 + 1)dy
dt = cos(t) with y(0) = 1 has

solution y3 + 3y = 3 sin t + 4. Plot this solution.

If we want a family of solutions we’ll need to solve it without the ini-
tial value and then use different constants. The above differential equation
(y2 − y)dy

dt = t has solution 2y3 − 3y2 = 3t2 + 6C so here’s what we can do for
C = −3,−2,−1, 0, 1, 2, 3:

clear all;

syms y t;

figure;hold on;

for C=[-3:3]

fimplicit(2*y^3-3*y^2==3*t^22+6*C)

end

6

hold off;

-1.5 -1 -0.5 0 0.5 1 1.5

-2

-1

0

1

2

3

4

5

Task 11: The differential equation (y2 + 1)dy
dt = cos(t) has solution y3 + 3y =

3 sin t + 3C. Plot the family of solutions for C = −10,−9, ..., 9, 10.

Direction Fields

Direction fields are pain to sketch since Matlab has no default code for it. Here’s
the code to do it for the differential equation dy

dt = y − t2

clear all

syms f(t,y)

f(t,y) = y-t^2;

[T,Y] = meshgrid(-5:0.5:5,-5:0.5:5);

S = f(T,Y);

L = sqrt(1+S.^2);

quiver(T,Y,1./L,S./L,0.35)

7

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

If you’re not that experienced in Matlab this code may look confusing. Basically
the [T,Y]=... line is telling us which grid points to put arrows at, in this case
t and y both go from −5 to 5 in steps of 0.5. The S=... and L=... commands,
along with the 1./L, S./L, and 0.35 parts of the quiver command, basically
generalize the following mathematical argument: If a slope segment had slope S
then it would go 1 unit horizontally and S units vertically. The length of such a
segment is L =

√
1 + S2 so to scale the slope segment to have length 1 it would

go 1/L units horizontally and S/L units vertically. The 0.35 is an additional
scaling factor that scales it from length 1 down to length 0.35.

The use of .^ and ./ is due to Matlab doing operations on matrices in the
background and for which I won’t say anything additional at present. Ask if
interested!

The only code you’d need to change is the function definition line and perhaps
the meshgrid line.

Task 12: Sketch the direction field for dy
dt = (1 − y) sin t for integer t and y

values between −10 and 10 and with segments of length 0.5.

Task 13: On this picture sketch a reasonable family of solutions. Note that the
DE is never undefined which might alleviate your concerns about the possibility
of vertical asymptotes.

8

Euler’s Method and Others

In order to apply the Euler Method to a differential equation of the form dy
dt =

f(t, y) (which also may be written y′(t) = f(t, y)) we need to know how to put
f into Matlab. We do this as follows for the differential equation dy

dt = t2y.

syms f(t,y)

f(t,y) = t^2*y

f(t, y) =

t^2*y

So now if we know some initial value, say y(1) = 2, and we wish to make a
single step of Euler’s Method to approximate y(1.1), we do this by noting that
y(1.1) ≈ y(1) + 0.1 ∗ y′(1) = 2 + 0.1 ∗ f(1, 2) and so then:

2+0.1*f(1,2)

ans =

11/5

At this juncture we know that y(1.1) ≈ 11/5 and we can use that to go an
additional step because y(1.2) ≈ y(1.1) + 0.1∗y′(1.1) ≈ 11/5 + 0.1∗f(1.1, 11/5)
and so then:

11/5+0.1*f(1.1,11/5)

ans =

12331/5000

Naturally we’d like to automate this somehow and we can do this using a for

loop which does the procedure however many times we wish. We start by
entering the starting t0 and y0, step size h and number of iterations n. For
example with our differential equation dy

dt = t2y if we know y(1) = 2 and want
to perform n = 10 steps of size h = 0.1 to get an approximate value for y(2)
then we can do:

syms f(t,y)

f(t,y) = t^2*y

t=1;y=2;h=0.1;n=10;

for s=1:n

y=vpa(y+h*f(t,y));

t=t+h;

end

y

9

f(t, y) =

t^2*y

y =

14.09693718144628016073605632

It’s worth noting that we’re not really assigning any new t1, ... or y1, ... variables
here, we’re just changing t and y at each step. If we needed to keep all the
intermediate values for some reason then this code would be different.

The vpa (stands for variable precision arithmetic) command makes sure that
y is returned to us as a decimal. Sometimes Matlab ends up with really ugly
fractions at the end of its calculations so this guarantees a comprehensible result.
You may get more or fewer digits than this shows.

Typing this directly into Matlab is a pain and it’s easy to make errors. Typing
these lines into an m-file is not so bad. Ideally this code would be typed into a
function m-file which could then be used over and over.

Task 14: Type the series of Matlab lines which would use Euler’s Methods
to approximate y(5) using 20 steps of size 0.1 from the initial value problem
dy
dt = t2+y

y with y(3) = −1.

Task 15: Type the series of Matlab lines which would do the same but with
the Runge-Midpoint Method. Observe that you’ll need to change the single line
y=y+... to use the correct formula.

10

